Roberts Cross Edge Detector

Roberts Cross边缘检测器是一种快速计算的2-D空间梯度测量方法,用于突出显示图像中的高空间频率区域,通常对应于边缘。该操作员通过2×2卷积核计算,对每个像素点的输入图像进行梯度估计。虽然计算速度快,但因其小尺寸核而对噪声敏感,主要适用于检测锐利边缘。
摘要由CSDN通过智能技术生成

http://homepages.inf.ed.ac.uk/rbf/HIPR2/roberts.htm

Roberts Cross Edge Detector


Common Names: Roberts Cross

Brief Description

The Roberts Cross operator performs a simple, quick to compute, 2-D spatial gradient measurement on an image. It thus highlights regions of high spatial frequency which often correspond to edges. In its most common usage, the input to the operator is a grayscale image, as is the output. Pixel values at each point in the output represent the estimated absolute magnitude of the spatial gradient of the input image at that point.

How It Works

In theory, the operator consists of a pair of 2×2 convolution kernels as shown in Figure 1. One kernel is simply the other rotated by 90°. This is very similar to the Sobel operator.




Figure 1 Roberts Cross convolution kernels

These kernels are designed to respond maximally to edges running at 45° to the pixel grid, one kernel for each of the two perpendicular orientations. The kernels can be applied separately to the input image, to produce separate measurements of the gradient component in each orientation (call these Gx and Gy). These can then be combined together to find the absolute magnitude of the gradient at each point and the orientation of that gradient. The gradient magnitude is given by:

Eqn:eqnrob1

although typically, an approximate magnitude is computed using:

Eqn:eqnrob2

which is much faster to compute.

The angle of orientation of the edge giving rise to the spatial gradient (relative to the pixel grid orientation) is given by:

Eqn:eqnrob3

In this case, orientation 0 is taken to mean that the direction of maximum contrast from black to white runs from left to right on the image, and other angles are measured clockwise from this.

Often, the absolute magnitude is the only output the user sees --- the two components of the gradient are conveniently computed and added in a single pass over the input image using the pseudo-convolution operator shown in Figure 2.




Figure 2 Pseudo-convolution kernels used to quickly compute approximate gradient magnitude

Using this kernel the approximate magnitude is given by:

Eqn:eqnrob4

Guidelines for Use

The main reason for using the Roberts Cross operator is that it is very quick to compute. Only four input pixels need to be examined to determine the value of each output pixel, and only subtractions and additions are used in the calculation. In addition there are no parameters to set. Its main disadvantages are that since it uses such a small kernel, it is very sensitive to noise. It also produces very weak responses to genuine edges unless they are very sharp. TheSobel operator performs much better in this respect.

We use

cln1

to illustrate the effect of the operator.

The image

cln1rob1

is the corresponding output from the Roberts Cross operator. The gradient magnitudes output by the operator have been multiplied by a factor of 5 to make the image clearer. Note the spurious bright dots on the image which demonstrate that the operator is susceptible to noise. Also note that only the strongest edges have been detected with any reliability.

The image

cln1rob2

is the result of thresholding the Roberts Cross output at a pixel value of 80.

We can also apply the Roberts Cross operator to detect depth discontinuity edges in range images. In the range image

ufo2

the distance from the sensor to the object is encoded in the intensity value of the image. Applying the Roberts Cross yields

ufo2rob1

The operator produced a line with high intensity values along the boundary of the object. On the other hand, intensity changes originating from depth discontinuities within the object are not high enough to output a visible line. However, if we threshold the image at a value of 20, all depth discontinuities in the object produce an edge in the image, as can be seen in

ufo2rob2

The operator's sensitivity to noise can be demonstrated if we add noise to the above range image. The image

ufo2noi1

is the result of adding Gaussian noise with a standard deviation of 8,

ufo2rob3

is the corresponding output of the Roberts Cross operator. The difference to the previous image becomes visible if we again threshold the image at a value of 20, as can be seen in

ufo2rob4

Now, we not only detect edges corresponding to real depth discontinuities, but also some noise points. We can show that the Roberts Cross operator is more sensitive to noise than, for example, the Sobel operator if we apply the Sobel operator to the same noisy image. In that case, we can find a threshold which removes most of the noise pixels while keeping all edges of the object. Applying a Sobel edge detector to the above noisy image and thresholding the output at a value of 150 yields

ufo2sob4

The previous examples contained sharp intensity or depth changes, which enabled us (in the noise-free case) to detect the edges very well. The image

ufo1

is a range image where the depth values change much more slowly. Hence, the edges in the resulting Roberts Cross image,

ufo1rob1

are rather faint. Since the intensity of many edge pixels in this image is very low, it is not possible to entirely separate the edges from the noise. This can be seen in

ufo1rob2

which is the result of thresholding the image at a value of 30.

The effects of the shape of the edge detection kernel on the edge image can be illustrated using

hse1

Applying the Roberts Cross operator yields

hse1rob1

Due to the different width and orientation of the lines in the image, the response in the edge image varies significantly. Since the intensity steps between foreground and background are constant in all patterns of the original image, this shows that the Roberts Cross operator responds differently to different frequencies and orientations.

If the pixel value type being used only supports a small range of integers (e.g. 8-bit integer images), then it is possible for the gradient magnitude calculations to overflow the maximum allowed pixel value. In this case it is common to simply set those pixel values to the maximum allowed value. In order to avoid this happening, image types that support a greater range of pixel values, e.g. floating point images, can be used.

There is a slight ambiguity in the output of the Roberts operator as to which pixel in the output corresponds to which pixel in the input, since technically the operator measures the gradient intensity at the point where four pixels meet. This means that the gradient image will be shifted by half a pixel in both x and y grid directions.

Interactive Experimentation

You can interactively experiment with this operator by clicking here.

Exercises

  1. Why does the Roberts Cross' small kernel size make it very sensitive to noise in the image?

  2. Apply the Roberts Cross operator to
    ren1

    Can you obtain an edge image that contains only lines corresponding to the contours of the object? Compare with the results obtained with the Sobel and Canny operators.

  3. Compare the result of applying the Roberts Cross operator to
    hse1

    with the one of using the Sobel operator.

  4. Compare the performance of the Roberts Cross with the Sobel operator in terms of noise rejection, edge detection and speed.

  5. Under what situations might you choose to use the Roberts Cross rather than the Sobel? And under what conditions would you avoid it?

References

R. Boyle and R. Thomas Computer Vision: A First Course, Blackwell Scientific Publications, 1988, pp 50 - 51.

E. Davies Machine Vision: Theory, Algorithms and Practicalities, Academic Press, 1990, Chap. 5.

L. Roberts Machine Perception of 3-D Solids, Optical and Electro-optical Information Processing, MIT Press 1965.

D. Vernon Machine Vision, Prentice-Hall, 1991, Chap. 5.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值