Matlab之graythresh()函數詳解

本文介绍使用最大类间方差法(OTSU)自动确定最佳阈值来转换灰度图像为二值图像的方法,并通过实例展示不同阈值设置的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://blog.csdn.net/star_gdx/article/details/14644777

1函數簡介

函數功能:使用 最大類間方差法找到圖片的一個合適的閾值(threshold)。在使用 im2bw函數將灰度圖像轉換為二值圖像時,需要設定一個閾值,這個函數可以幫助我們獲得一個合適的閾值。利用這個閾值通常比人為設定的閾值能更好地把一張灰度圖像轉換為二值圖像。
調用格式:
level = graythresh(I)
[level EM] = graythresh(I)
通過計算獲得輸入圖像的閾值,這個閾值在[0, 1]范圍內。該閾值可以傳遞給im2bw完成灰度圖像轉換為二值圖像的操作。
graythresh使用 最大類間方差法來獲得一個閾值。
最大類間方差法是由日本學者大津(Nobuyuki Otsu)於1979年提出的,是一種自適應的閾值確定的方法,又叫大津法,簡稱OTSU。它是按 圖像的灰度特性,將圖像分成背景和目標2部分。背景和目標之間的類間方差越大,說明構成圖像的2部分的差別越大,當部分目標錯分為背景或部分背景錯分為目標都會導致2部分差別變小。因此,使類間方差最大的分割意味著錯分概率最小。
相關函數:  im2bw

2程序示例

imggray =  imread('cell.bmp');
subplot(221);  imshow(imggray); title('原始圖像');
imgbw =  im2bw(imggray);
subplot(222);  imshow(imgbw); title( '使用默認閾值0.5');
imgbw =  im2bw(imggray, 0.25);
subplot(223);  imshow(imgbw); title( '指定閾值為0.25');
level = graythresh(imggray); imgbw = im2bw(imggray,level);
subplot(224);  imshow(imgbw); title('使用 最大類間方差法(Otsu)獲得閾值');
由此可見, 如果不使用graythresh函數來獲得閾值, 可能需要多次嘗試才能獲得一個合適的閾值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值