文章目录
1. 复数
1.1 复数及其运算
基本概念
z = x + i y z = x+iy z=x+iy
其中,实部 x = R e z x=Rez x=Rez、虚部 y = I m z y=Imz y=Imz
1.2 共轭复数
定义
设 z = x + i y z=x+iy z=x+iy是一个复数,称 z ˉ = x − i y \bar{z} =x-iy zˉ=x−iy是z的共轭复数
性质
(1)表示实部虚部
x = z + z ˉ 2 y = z − z ˉ 2 i x = \frac{z + \bar{z}}{2} \\ y = \frac{z-\bar{z}}{2i} x=2z+zˉy=2iz−zˉ
(2)运算拆分
两个复数运算后结果的共轭等于两个复数的共轭复数运算后的共轭
z 1 ⋅ z 2 ˉ = z 1 ˉ ⋅ z 2 ˉ \bar{z_1 \cdot z_2 } = \bar{z_1} \cdot \bar{z_2} z1⋅z2ˉ=z1ˉ⋅z2ˉ
(3)分数变换
通过共轭复数乘积性质将复数从分母变为分子
z 1 ⋅ z 1 ˉ = x 2 + y 2 1 z = z ˉ x 2 + y 2 z_1 \cdot \bar{z_1} = x^2+y^2 \\ \frac{1}{z} = \frac{\bar{z}}{x^2+y^2} z1⋅z1ˉ=x2+y2z1=x2+y2z