7-9 玩转二叉树 (25分)
给定一棵二叉树的中序遍历和前序遍历,请你先将树做个镜面反转,再输出反转后的层序遍历的序列。所谓镜面反转,是指将所有非叶结点的左右孩子对换。这里假设键值都是互不相等的正整数。
输入格式:
输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其中序遍历序列。第三行给出其前序遍历序列。数字间以空格分隔。
输出格式:
在一行中输出该树反转后的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。
输入样例:
7
1 2 3 4 5 6 7
4 1 3 2 6 5 7
输出样例:
4 6 1 7 5 3 2
思路:
这题就是把二叉树的几个函数结合到一块,还原二叉树、层次遍历、交换孩子结合起来就行了,这种题以前也都做过:树的遍历、还原二叉树
参考柳神的版本:
#include<bits/stdc++.h>
using namespace std;
int N;
vector<int> preod,inod,level(10010,-1);
void solve(int root,int begin,int end,int index){
if(begin > end)
return;
level[index] = preod[root];
int i = begin;
while(preod[root] != inod[i])
i++;
solve(root+1,begin,i-1,2*index+2);
solve(root+i-begin+1,i+1,end,2*index+1);
}
int main(){
cin >> N;
int tp;
for(int i = 0;i < N;i++){
cin >> tp;
inod.push_back(tp);
}
for(int i = 0;i < N;i++){
cin >> tp;
preod.push_back(tp);
}
solve(0,0,N-1,0);
int flag = 0;
for(int i = 0;i < 10000;i++){
if(level[i]!=-1){
if(flag++)
cout << " ";
cout << level[i];
}
}
}
简洁版,将层次遍历逆着输出就是镜像变换了:
#include<bits/stdc++.h>
using namespace std;
vector<int> preod,inod;
vector< vector<int> > levels(33);
void sett(int root,int begin,int end,int level){
if(begin > end)
return;
int i = begin;
while(i < end && inod[i] != preod[root])
i++;
levels[level].push_back(preod[root]);
sett(root+1,begin,i-1,level+1);
sett(root+i-begin+1,i+1,end,level+1);
}
int main(){
int N;
cin >> N;
preod.resize(N);
inod.resize(N);
for(int i = 0;i < N;i++)
cin >> inod[i];
for(int i = 0;i < N;i++)
cin >> preod[i];
sett(0,0,N-1,0);
cout << levels[0][0];
for(int i = 1;i < 33;i++){
for(int j = levels[i].size()-1;j>=0;j--)
cout << " " << levels[i][j];
}
}
AC代码:
#include<bits/stdc++.h>
using namespace std;
typedef struct btnode{
int data;
struct btnode *left,*right;
}BTnode,*BTree;
int preod[10010],inod[10010]; //一个是先序数组,一个是中序数组
BTree Retree(int root,int begin,int end){ //Retree目的是通过先序和中序遍历还原二叉树
//root是先序中的根结点,begin是中序的开头,end是中序的结尾
if(begin > end)
return NULL;
int tp;
for(tp = begin;tp < end;tp++){ //找到先序中的根结点,位于中序中的什么位置
if(preod[root] == inod[tp])
break;
}
BTnode *node = new BTnode;
node->data = preod[root];
node->left = Retree(root+1,begin,tp-1);
node->right = Retree(root+1+tp-begin,tp+1,end);
return node;
}
BTree change(BTree bt){
if(!bt->left && !bt->right){
return bt;
}else{
BTree a1,a2;
if(bt->left){
a1 = change(bt->left);
}else{
a1 = NULL;
}
if(bt->right){
a2 = change(bt->right);
}else{
a2 = NULL;
}
bt->left = a2;
bt->right = a1;
return bt;
}
}
void bfs(BTree bt) { //通过队列实现二叉树的层序遍历
BTnode *queue[100];
int front = -1,rear = 0;
int flag = 0;
if(bt == NULL)
return;
queue[rear] = bt;
while(front != rear){ //当front和rear相等时队列为空
front++;
if(flag++)
cout << " ";
cout << queue[front]->data;
if(queue[front]->left != NULL){
rear++;
queue[rear] = queue[front]->left;
}
if(queue[front]->right != NULL){
rear++;
queue[rear] = queue[front]->right;
}
}
}
int main(){
int n;
cin >> n;
for(int i = 0;i < n;i++)
cin >> inod[i];
for(int i = 0;i < n;i++)
cin >> preod[i];
BTree bt;
bt = Retree(0,0,n-1);
bfs(change(bt));
}