7-9 玩转二叉树 (25分)

7-9 玩转二叉树 (25分)

给定一棵二叉树的中序遍历和前序遍历,请你先将树做个镜面反转,再输出反转后的层序遍历的序列。所谓镜面反转,是指将所有非叶结点的左右孩子对换。这里假设键值都是互不相等的正整数。

输入格式:

输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其中序遍历序列。第三行给出其前序遍历序列。数字间以空格分隔。

输出格式:

在一行中输出该树反转后的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。

输入样例:

7
1 2 3 4 5 6 7
4 1 3 2 6 5 7

输出样例:

4 6 1 7 5 3 2

思路:

这题就是把二叉树的几个函数结合到一块,还原二叉树、层次遍历、交换孩子结合起来就行了,这种题以前也都做过:树的遍历还原二叉树

参考柳神的版本:

#include<bits/stdc++.h>
using namespace std;
int N;
vector<int> preod,inod,level(10010,-1);
void solve(int root,int begin,int end,int index){
	if(begin > end)
		return;
	level[index] = preod[root];
	int i = begin;
	while(preod[root] != inod[i])
		i++;
	solve(root+1,begin,i-1,2*index+2);
	solve(root+i-begin+1,i+1,end,2*index+1);
}
int main(){
	cin >> N;
	int tp;
	for(int i = 0;i < N;i++){
		cin >> tp;
		inod.push_back(tp);
	}
	for(int i = 0;i < N;i++){
		cin >> tp;
		preod.push_back(tp);
	}
	solve(0,0,N-1,0);
	int flag = 0;
	for(int i = 0;i < 10000;i++){
		if(level[i]!=-1){
			if(flag++)
			cout << " ";
			cout << level[i];
		}
			
	}
}

简洁版,将层次遍历逆着输出就是镜像变换了:

#include<bits/stdc++.h>
using namespace std;
vector<int> preod,inod;
vector< vector<int> > levels(33);
void sett(int root,int begin,int end,int level){
	if(begin > end)
		return;
	int i = begin;
	while(i < end && inod[i] != preod[root])
		i++;
	levels[level].push_back(preod[root]);
	sett(root+1,begin,i-1,level+1);
	sett(root+i-begin+1,i+1,end,level+1);
}
int main(){
	int N;
	cin >> N;
	preod.resize(N);
	inod.resize(N);
	for(int i = 0;i < N;i++)
		cin >> inod[i];
	for(int i = 0;i < N;i++)
		cin >> preod[i];
	sett(0,0,N-1,0);
	cout << levels[0][0];
	for(int i = 1;i < 33;i++){
		for(int  j = levels[i].size()-1;j>=0;j--)
			cout << " " << levels[i][j];
	}
}

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef struct btnode{
	int data;
	struct btnode *left,*right;
}BTnode,*BTree;
int preod[10010],inod[10010];	//一个是先序数组,一个是中序数组 
BTree Retree(int root,int begin,int end){	//Retree目的是通过先序和中序遍历还原二叉树 
//root是先序中的根结点,begin是中序的开头,end是中序的结尾 
	if(begin > end)
		return NULL;
	int tp;
	for(tp = begin;tp < end;tp++){	//找到先序中的根结点,位于中序中的什么位置 
		if(preod[root] == inod[tp])
			break;
	}
	BTnode *node = new BTnode; 
	node->data = preod[root];
	node->left = Retree(root+1,begin,tp-1);
	node->right = Retree(root+1+tp-begin,tp+1,end);
	return node;
}
BTree change(BTree bt){
	if(!bt->left && !bt->right){
		return bt;
	}else{
		BTree a1,a2;
		if(bt->left){
			a1 = change(bt->left);
		}else{
			a1 = NULL;
		}
		if(bt->right){
			a2 = change(bt->right);
		}else{
			a2 = NULL;
		}
		bt->left = a2;
		bt->right = a1;
		return bt;
	}
}
void bfs(BTree bt) {	//通过队列实现二叉树的层序遍历
	BTnode *queue[100];
	int front = -1,rear = 0;
	int flag = 0;
	if(bt == NULL)
		return;
	queue[rear] = bt;
	while(front != rear){	//当front和rear相等时队列为空
		front++;
		if(flag++)
		cout << " ";
		cout << queue[front]->data;
		if(queue[front]->left != NULL){
			rear++;
			queue[rear] = queue[front]->left;
		}
		if(queue[front]->right != NULL){
			rear++;
			queue[rear] = queue[front]->right;
		}
	}
}
int main(){
	int n;
	cin >> n;
	for(int i = 0;i < n;i++)
		cin >> inod[i];
	for(int i = 0;i < n;i++)
		cin >> preod[i];
	BTree bt;
	bt = Retree(0,0,n-1);
	bfs(change(bt));
}
### 回答1: 题目描述 本题要求给定二叉树的4种遍历结果,给出该树的结构。 输入格式: 输入给出4行,每行先给出正整数N (≤30),随后是由空格隔的N个整数。其中第1行给出先序遍历结果,第2行给出中序遍历结果,第3行给出后序遍历结果,第4行给出层序遍历结果。数字间以1个空格隔,行末不得有多余空格。 输出格式: 如果输入的4种遍历结果不合法,则在一行中输出"No",并结束程序。 如果输入的4种遍历结果合法,则在一行中输出该树的根结点的编号。如果结果不唯一,则输出其中最小的编号。 输入样例1: 7 2 3 1 5 6 7 4 2 1 3 7 5 6 4 2 7 6 5 4 3 1 1 2 4 3 5 7 6 输出样例1: 1 输入样例2: 7 2 3 1 5 6 7 4 2 3 1 7 5 6 4 2 7 6 5 4 3 1 1 2 4 3 5 7 6 输出样例2: No 题目析 根据二叉树的遍历序列可以构造出一棵二叉树,而给出的是四种遍历方式,因此可以将四种遍历结果输入,构造出一棵二叉树,然后在二叉树中找出根结点即可。 二叉树的构造可以使用递归函数实现,由于需要用到中序遍历,因此可以先根据中序遍历结果找到根结点,然后递归地处理左右子树。找到根结点后,可以利用先序遍历和后序遍历的性质,别处理左右子树,得到左右子树的根结点。 时间复杂度 本题需要对四种遍历结果进行遍历,时间复杂度为 O(n),其中 n 是二叉树的结点数。 ### 回答2: l2-011 玩转二叉树是一道二叉树的题目,需要我们熟练掌握二叉树的基本概念和常用操作,才能够解决问题。对于这道题目,主要是考察二叉树的遍历方式和二叉树的特性。 首先,我们需要了解二叉树的遍历方式。二叉树的遍历方式有前序遍历、中序遍历和后序遍历三种。其中前序遍历是指先输出根节点,再输出左子树,最后输出右子树。中序遍历是指先输出左子树,再输出根节点,最后输出右子树。后序遍历是指先输出左子树,再输出右子树,最后输出根节点。同时,还有层次遍历,它是按照从上到下,从左到右的顺序进行遍历。在解决这道题目时,需要使用到前序遍历和后序遍历。 其次,我们需要了解二叉树的特性。二叉树是一种树形结构,每个节点最多有两个孩子节点。在解决这道题目时,需要用到的是先序遍历和后序遍历,以及二叉树的性质之一:对于一个节点,它的左子树中的所有节点小于它的值,它的右子树中的所有节点大于它的值。 通过以上的了解,我们就可以开始解决这道题目。首先,我们需要输入先序遍历和后序遍历,根据先序遍历和后序遍历的特性,可以得出根节点以及它的左子树和右子树。接下来,我们需要递归的进行操作,根据左子树和右子树的特性,确定每个子树的根节点和它的左右子树。最后,就可以得到一棵完整的二叉树。 总之,这道题目主要考察对于二叉树的掌握程度,需要熟练掌握二叉树的遍历方式和特性。同时,需要学会运用递归思想,将大问题拆成小问题,步骤解决问题。 ### 回答3: 题目描述 本题要求对给定的二叉树建立线索,并对指定结点进行遍历操作。 解题思路 本题思路较多,但有一个很关键的点,就是如何建立线索。以下简述建立线索的思路: - 对于有左儿子的节点,将其右空指针指向其后继节点,即中序遍历下的后继节点; - 对于有右儿子的节点,将其左空指针指向其前驱节点,即中序遍历下的前驱节点; - 对于没有左右儿子的节点,不做任何处理。 在线索化后,就可以使用线索树进行中序遍历,省去了递归的空间开销。具体中序遍历思路如下: - 对根节点进行转向,即将其左空指针指向前驱节点,将其右空指针指向后继节点; - 对于每个节点,如果其左指针为空,就输出该节点并继续遍历其右孩子;否则继续转向到其左孩子节点继续遍历。 解题步骤 1.读入节点数和根节点编号,建立空的二叉树。 2.读入节点数据和父节点编号,建立二叉树。 3.进行二叉树线索化,建立线索树,省去递归空间开销。 4.根据输入要求,使用线索化的中序遍历进行操作。 5.遍历完毕,程序结束。 代码实现 本题要求使用++data存储节点数据,而不是输入的编号,所以读入节点前需要将其编号存储在map中,建立编号和数据的映射。以下是AC代码,加了少量注释以方便理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

China-Rookie-LSJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值