方差分析(Analysis of Variance,简称ANOVA)
用于两个及两个以上样本均数差别的显著性检验。
作用:确定参数对算法性能的影响
基础概念:方差分析
如何理解p值和F值
Sum.sq.——平方和
d.f. ——自由度
Mean.Sq.——均方
F-value——F值
p-value——p值
关于F值和p值
每一个F值都会对应一个p值,F值越大,p值越小
所以实际上F值和p值都能用来检验显著性差异
p-value就是用于检验特征与变量之间相关性的
假设你给出α值(常常取0.05,0.01),如果你的p-value小于α,那就有把握认为,这个特征和预测变量y之间,具有相关性。
假设:H0——无差异;H1——有显著差异
P>0.05称“不显著”;P<=0.05称“显著”,P<=0.01称“非常显著”。
P>0.05只能说明没有充分的证据说明二者确有差别,但是也不能说二者没有差别或差别很小。
F是显著性差异的水平,用计算出的F值与F表中的值对比,就可以确定是否存在显著性差异。
F < F表 表明两组数据没有显著差异;
F ≥ F表 表明两组数据存在显著差异