多变量线性回归
假设
h
θ
(
x
)
=
θ
0
+
θ
1
x
1
+
θ
2
x
2
+
θ
3
x
3
+
θ
4
x
4
h_\theta(x)=\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3+\theta_4x_4
hθ(x)=θ0+θ1x1+θ2x2+θ3x3+θ4x4
为了表示方便,我们定义一个单纯为了计算方便的特征,也就是
x
0
=
1
x_0=1
x0=1.
此时
h
θ
(
x
)
=
θ
T
x
h_\theta(x)=\theta^Tx
hθ(x)=θTx,
x
x
x和
θ
\theta
θ都是n+1维的向量。
代价函数
同单变量线性回归。
梯度下降算法求解
梯度下降算法的优化
为了使得梯度下降算法正常的工作,最好各个特征值的大小和范围都比较接近,否则会出现如下图一样的运算路径。
所以需要调整变量的范围,使得范围接近、均值为0,即对变量做如下处理:
x
=
x
−
μ
s
x=\frac{x-\mu}{s}
x=sx−μ
这里的
μ
\mu
μ是x的均值;s是x的方差,或者较为实用的是可以取(max-min).
使用线性拟合二次或者三次曲线
将 x x x视作 x 1 x_1 x1,将 x 2 x^2 x2视作 x 2 x_2 x2,将 x 3 x^3 x3视作 x 3 x_3 x3.
正规方程法求解
θ
=
(
X
T
X
)
−
1
X
T
y
\theta=(X^TX)^{-1}X^Ty
θ=(XTX)−1XTy
正规方程法不需要尝试,只需一次计算即可获得结果。
但是计算复杂度高,只适用于低纬度的矩阵运算。