Pytorch之nn.Conv1d学习个人见解
一、官方文档(务必先耐心阅读)
官方文档:点击打开《CONV1D》
二、Conv1d个人见解
Conv1d类构成
- class torch.nn.Conv1d(in_channels, out_channels, kernel_size,stride=1, padding=0, dilation=1, groups=1, bias=True)
- in_channels(int)—输入数据的通道数。在文本分类中,即为句子中单个词的词向量的维度。 (word_vector_num)
- out_channels(int)—输出数据的通道数。设置 N 个输出通道数,就有 N 个1维卷积核。(new word_vector_num)
- kernel_size(int or tuple) —卷积核的长度,1维卷积中卷积核的实际大小维度是(in_channels,kernel_size),顺序不可互换。
- stride(int or tuple, optional)—卷积步长。
- padding (int or tuple, optional)—输入的每一条边补充0的层数。
- dilation(int or tuple, `optional``)—卷积核元素之间的间距。
- groups(int, optional)—从输入通道到输出通道的阻塞连接数。
- bias(bool, optional)—如果bias=True,添加偏置。
具体案例分析
-
原始数据集说明:6批句子(batch_size),每批句子5个单词(sentence_word_num),每个单词的词向量为3维通道(word_vector_num),数据集的维度表示为 [6,5,3] 。
-
模型输入数据集说明:在上步原始数据集中进行维度转换,6批句子(batch_size),每个单词的词向量为3维通道(word_vector_num),每批句子5个单词(sentence_word_num),数据集的维度表示为 [6,3,5] 。(注意:为什么需要维度转换呢?因为Conv1d模型的卷积核大小是[输入通道数,卷积核的长],那么数据集和卷积核的点积运算必须维度都一致)
-
Conv1d模型参数说明:输入通道数设定为3(数量等同 word_vector_num ),输出通道数设定为8(数量表示new word_vector_num),卷积核的长设定为2。
-
Conv1d模型权重参数(W)维度则根据上步自动生成为 [8,3,2] ,表示 [输出通道数,输入通道数,卷积核的长],又因为卷积核等同表示 [输入通道数,卷积核的长],输出通道数等同表示卷积核的个数,则总而言之,此模型权重参数的维度表示:有8个大小为[3,2]的卷积核去对输入数据做卷积运算。
-
卷积过程中的数据计算说明(非常重要):模型输入数据是一个深度为6长为3宽为5的三维数据,卷积核长为3宽度为2的