Pytorch之nn.Conv1d学习个人见解

本文深入解析Pytorch中的nn.Conv1d,包括官方文档解读、Conv1d参数详细解释、与Conv2d的区别,并通过案例分析卷积过程及输出数据集的变化。适合了解1维卷积在网络中的应用。
摘要由CSDN通过智能技术生成

Pytorch之nn.Conv1d学习个人见解

一、官方文档(务必先耐心阅读)

官方文档:点击打开《CONV1D》

二、Conv1d个人见解

Conv1d类构成

  • class torch.nn.Conv1d(in_channels, out_channels, kernel_size,stride=1, padding=0, dilation=1, groups=1, bias=True)
  • in_channels(int)—输入数据的通道数。在文本分类中,即为句子中单个词的词向量的维度。 (word_vector_num)
  • out_channels(int)—输出数据的通道数。设置 N 个输出通道数,就有 N 个1维卷积核。(new word_vector_num)
  • kernel_size(int or tuple) —卷积核的长度,1维卷积中卷积核的实际大小维度是(in_channels,kernel_size),顺序不可互换。
  • stride(int or tuple, optional)—卷积步长。
  • padding (int or tuple, optional)—输入的每一条边补充0的层数。
  • dilation(int or tuple, `optional``)—卷积核元素之间的间距。
  • groups(int, optional)—从输入通道到输出通道的阻塞连接数。
  • bias(bool, optional)—如果bias=True,添加偏置。

具体案例分析

  • 原始数据集说明:6批句子(batch_size),每批句子5个单词(sentence_word_num),每个单词的词向量为3维通道(word_vector_num),数据集的维度表示为 [6,5,3] 。
    在这里插入图片描述

  • 模型输入数据集说明:在上步原始数据集中进行维度转换,6批句子(batch_size),每个单词的词向量为3维通道(word_vector_num),每批句子5个单词(sentence_word_num),数据集的维度表示为 [6,3,5] 。(注意:为什么需要维度转换呢?因为Conv1d模型的卷积核大小是[输入通道数,卷积核的长],那么数据集和卷积核的点积运算必须维度都一致
    在这里插入图片描述

  • Conv1d模型参数说明:输入通道数设定为3(数量等同 word_vector_num ),输出通道数设定为8(数量表示new word_vector_num),卷积核的长设定为2。

  • Conv1d模型权重参数(W)维度则根据上步自动生成为 [8,3,2] ,表示 [输出通道数,输入通道数,卷积核的长],又因为卷积核等同表示 [输入通道数,卷积核的长],输出通道数等同表示卷积核的个数,则总而言之,此模型权重参数的维度表示:有8个大小为[3,2]的卷积核去对输入数据做卷积运算
    在这里插入图片描述

  • 卷积过程中的数据计算说明(非常重要):模型输入数据是一个深度为6长为3宽为5的三维数据,卷积核长为3宽度为2的

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rothschildlhl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值