如何通过torch使用梯度下降法( Gradient descent)求函数极小值

梯度下降法详解

1. 梯度下降法

梯度下降法(Gradient descent,简称GD)是一阶最优化算法,计算过程就是沿梯度下降的方向求解极小值,公式如下所示,其中 μ \mu μ表示学习率, g t g^t gt表示梯度, t t t表示第t次迭代。通过多次迭代计算上面公式可以求得极小值点(非最小值)。
x t + 1 = x t − μ ⋅ g t x^{t+1}=x^t-\mu·g^t xt+1=xtμgt

torch.optim.SGD

在torch中内置许多算法,其中torch.optim.SGD函数就是随机梯度下降法。其参数包括:

  • params (iterable)
  • lr (float) – 学习率
    params 是需要进行优化的参数,lr就是学习率。

在使用SDG()需要用到他的两个方法:zero_grad()step()以及参数的梯度计算:backward()

  • SDG(params, lr).zero_grad(),这个方法的作用是将params所包含的张量的梯度置0,因为每次使用backward()计算得到的梯度都会累加到原来的梯度上。

  • SDG(params, lr).step(),这个方法是执行 x t + 1 = x t − μ ⋅ g t x^{t+1}=x^t-\mu·g^t xt+1=xtμg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rpsate

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值