文章转载自知乎中的评论,觉得很直观,且方便后续查看。以下为链接,侵删:https://www.zhihu.com/question/298810062/answer/2274132657
我们直接用torch实现一个SelfAttention来说一说:
1、首先定义三个线性变换矩阵,query, key, value:
class BertSelfAttention(nn.Module):
self.query = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
self.key = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
self.value = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
注意,这里的query, key, value只是一种操作(线性变换)的名称,实际的Q/K/V是它们三个的输出2. 假设三种操作的输入都是同一个矩阵(暂且先别管为什么输入是同一个矩阵),这里暂且定为长度为L的句子,每个token的特征维度是768,那么输入就是(L, 768),每一行就是一个字,像这样:
乘以上面三种操作就得到了Q/K/V,(L, 768)*(768,768) = (L,768),维度其实没变,即此刻的Q/K/V分别为:
代码为:
class BertSelfAttention(nn.Module):
def __init__(self, config):
self.query = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
self.key = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
self.value = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
def forward(self,hidden_states): # hidden_states 维度是(L, 768)
Q = self.query(hidden_states)
K = self.key(hidden_states)
V = self.value(hidden_states)
- 然后来实现这个操作:
① 首先是Q和K矩阵乘,(L, 768)*(L, 768)的转置=(L,L),看图:
首先用Q的第一行,即“我”字的768特征和K中“我”字的768为特征点乘求和,得到输出(0,0)位置的数值,这个数值就代表了“我想吃酸菜鱼”中“我”字对“我”字的注意力权重,然后显而易见输出的第一行就是“我”字对“我想吃酸菜鱼”里面每个字的注意力权重;整个结果自然就是“我想吃酸菜鱼”里面每个字对其它字(包括自己)的注意力权重(就是一个数值)了~
② 然后是除以根号dim,这个dim就是768,至于为什么要除以这个数值?主要是为了缩小点积范围,确保softmax梯度稳定性,具体推导可以看这里:Self-attention中dot-product操作为什么要被缩放,然后就是为什么要softmax,一种解释是为了保证注意力权重的非负性,同时增加非线性,还有一些工作对去掉softmax进行了实验,如PaperWeekly:线性Attention的探索:Attention必须有个Softmax吗?
③ 然后就是刚才的注意力权重和V矩阵乘了,如图:
注意力权重 x VALUE矩阵 = 最终结果。
首先是“我”这个字对“我想吃酸菜鱼”这句话里面每个字的注意力权重,和V中“我想吃酸菜鱼”里面每个字的第一维特征进行相乘再求和,这个过程其实就相当于用每个字的权重对每个字的特征进行加权求和,然后再用“我”这个字对对“我想吃酸菜鱼”这句话里面每个字的注意力权重和V中“我想吃酸菜鱼”里面每个字的第二维特征进行相乘再求和,依次类推 最终也就得到了(L,768)的结果矩阵,和输入保持一致~
整个过程在草稿纸上画一画简单的矩阵乘就出来了,一目了然~最后上代码:
class BertSelfAttention(nn.Module):
def __init__(self, config):
self.query = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
self.key = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
self.value = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
def forward(self,hidden_states): # hidden_states 维度是(L, 768)
Q = self.query(hidden_states)
K = self.key(hidden_states)
V = self.value(hidden_states)
attention_scores = torch.matmul(Q, K.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
attention_probs = nn.Softmax(dim=-1)(attention_scores)
out = torch.matmul(attention_probs, V)
return out
-
为什么叫自注意力网络?因为可以看到Q/K/V都是通过同一句话的输入算出来的,按照上面的流程也就是一句话内每个字对其它字(包括自己)的权重分配;那如果不是自注意力呢?简单来说,Q来自于句A,K,V来自于句B即可~
-
注意,K和V中,如果同时替换任意两个字的位置,对最终的结果是不会有影响的,至于为什么,可以自己在草稿纸上画一画矩阵乘;也就是说注意力机制是没有位置信息的,不像CNN/RNN/LSTM;这也是为什么要引入位置embeding的原因。