Wald检验
检验 H 0 : θ = θ 0 , H 1 : θ ≠ θ 0 H_0:\theta = \theta_0, \ H_1:\theta \ne\theta_0 H0:θ=θ0, H1:θ=θ0,如若 θ ^ \hat{\theta} θ^是渐进正态的,则显著水平为 α \alpha α的Wald检验是当 ∣ W ∣ > z α / 2 |W|>z_{\alpha/2} ∣W∣>zα/2时拒绝原假设,其中 W = θ ^ − θ 0 s e ^ . W=\frac{\hat{\theta}-\theta_0}{\hat{se}}. W=se^θ^−θ0.
Wald检验是易于理解的,首先阐述了估计量是渐进正态的,则在大样本下
W
W
W就是标准正态变量,当满足
∣
W
∣
>
z
α
/
2
|W|>z_{\alpha/2}
∣W∣>zα/2意味着W出现的概率已经小于
α
\alpha
α. 这一点可以通过下面的等式说明:
z
α
=
Φ
(
1
−
α
)
P
θ
(
θ
^
−
θ
0
s
e
^
>
z
α
/
2
)
+
P
θ
(
θ
^
−
θ
0
s
e
^
<
−
z
α
/
2
)
=
P
θ
(
∣
θ
^
−
θ
0
∣
s
e
^
>
z
α
/
2
)
→
P
θ
(
∣
Z
∣
>
z
α
/
2
)
→
α
\begin{aligned} &z_{\alpha}=\Phi(1- \alpha)\\ &P_\theta(\frac{\hat{\theta}-\theta_0}{\hat{se}}>z_{\alpha/2})+ P_\theta(\frac{\hat{\theta}-\theta_0}{\hat{se}}<-z_{\alpha/2}) \\ &=P_\theta(\frac{|\hat{\theta}-\theta_0|}{\hat{se}}>z_{\alpha/2})\\ &\rightarrow P_\theta(|Z|>z_{\alpha/2})\\ &\rightarrow \alpha \end{aligned}
zα=Φ(1−α)Pθ(se^θ^−θ0>zα/2)+Pθ(se^θ^−θ0<−zα/2)=Pθ(se^∣θ^−θ0∣>zα/2)→Pθ(∣Z∣>zα/2)→α
定理:考虑
θ
\theta
θ的真实值为
θ
∗
≠
θ
0
\theta^* \ne \theta_0
θ∗=θ0,也就是原假设为加的时候的势函数(Power Function)大小,其近似值为:
1
−
Φ
(
θ
0
−
θ
∗
s
e
^
+
z
α
/
2
)
+
Φ
(
θ
0
−
θ
∗
s
e
^
−
z
α
/
2
)
1-\Phi(\frac{\theta_0-\theta^*}{\hat{se}}+z_{\alpha/2})+\Phi(\frac{\theta_0-\theta^*}{\hat{se}}-z_{\alpha/2})
1−Φ(se^θ0−θ∗+zα/2)+Φ(se^θ0−θ∗−zα/2)
Proof:
β
(
θ
∗
)
=
P
θ
∗
(
∣
θ
^
−
θ
0
s
e
^
∣
>
z
α
/
2
)
=
P
θ
∗
(
θ
^
−
θ
0
s
e
^
>
z
α
/
2
)
+
P
θ
∗
(
θ
^
−
θ
0
s
e
^
<
−
z
α
/
2
)
\begin{aligned} \beta(\theta^*) &= P_{\theta^*}(|\frac{\hat{\theta}-\theta_0}{\hat{se}}| >z_{\alpha/2})\\ &=P_{\theta^*}(\frac{\hat{\theta}-\theta_0}{\hat{se}} >z_{\alpha/2})+P_{\theta^*}(\frac{\hat{\theta}-\theta_0}{\hat{se}} <-z_{\alpha/2}) \end{aligned}
β(θ∗)=Pθ∗(∣se^θ^−θ0∣>zα/2)=Pθ∗(se^θ^−θ0>zα/2)+Pθ∗(se^θ^−θ0<−zα/2)为了方便起见,先考虑第一部分,第二部分的方法类似:
β
(
θ
∗
)
=
P
θ
∗
(
θ
^
−
θ
0
s
e
^
>
z
α
/
2
)
=
P
θ
∗
(
θ
^
>
θ
0
+
s
e
^
z
α
/
2
)
=
P
θ
∗
(
θ
^
−
θ
∗
>
θ
0
−
θ
∗
+
s
e
^
z
α
/
2
)
=
P
θ
∗
(
θ
^
−
θ
∗
s
e
^
>
θ
0
−
θ
∗
+
s
e
^
z
α
/
2
s
e
^
)
=
P
θ
∗
(
θ
^
−
θ
∗
s
e
^
>
θ
0
−
θ
∗
s
e
^
−
z
α
/
2
)
≈
P
θ
∗
(
Z
>
θ
0
−
θ
∗
s
e
^
−
z
α
/
2
)
=
1
−
Φ
(
θ
0
−
θ
∗
s
e
^
−
z
α
/
2
)
\begin{aligned} \beta(\theta^*) &=P_{\theta^*}(\frac{\hat{\theta}-\theta_0}{\hat{se}} >z_{\alpha/2})\\ &=P_{\theta^*}(\hat{\theta}>\theta_0+\hat{se} z_{\alpha/2})\\ &=P_{\theta^*}(\hat{\theta}-\theta^*>\theta_0-\theta^*+\hat{se} z_{\alpha/2})\\ &=P_{\theta^*}(\frac{\hat{\theta}-\theta^*}{\hat{se}}>\frac{\theta_0-\theta^*+\hat{se} z_{\alpha/2}}{\hat{se}})\\ &=P_{\theta^*}(\frac{\hat{\theta}-\theta^*}{\hat{se}}>\frac{\theta_0-\theta^*}{\hat{se}}-z_{\alpha/2})\\ &\approx P_{\theta^*}(Z>\frac{\theta_0-\theta^*}{\hat{se}}-z_{\alpha/2})\\ &=1-\Phi(\frac{\theta_0-\theta^*}{\hat{se}}-z_{\alpha/2}) \end{aligned}\\
β(θ∗)=Pθ∗(se^θ^−θ0>zα/2)=Pθ∗(θ^>θ0+se^zα/2)=Pθ∗(θ^−θ∗>θ0−θ∗+se^zα/2)=Pθ∗(se^θ^−θ∗>se^θ0−θ∗+se^zα/2)=Pθ∗(se^θ^−θ∗>se^θ0−θ∗−zα/2)≈Pθ∗(Z>se^θ0−θ∗−zα/2)=1−Φ(se^θ0−θ∗−zα/2)
p值
对于任意
α
∈
(
0
,
1
)
\alpha \in(0,1)
α∈(0,1),存在显著性水平为
α
\alpha
α的检验,对应的拒绝域为
R
α
R_\alpha
Rα,则
p
−
v
a
l
u
e
=
inf
{
α
:
T
(
X
n
)
∈
R
α
}
p-value = \inf\{\alpha:T(X^n)\in R_\alpha \}
p−value=inf{α:T(Xn)∈Rα}
这里
T
T
T表示检验统计量,上式的含义是使得检验统计量属于拒绝域的最小显著水平
α
\alpha
α。
和检验的过程不同,求取p-value的过程是这样的:先计算检验统计量,得到统计量之后反过来求最小显著水平。而检验的过程是已经确定一个显著水平,然后计算检验统计量,然后就确定是否拒绝原假设。
一般来说,这个最小显著水平p-value小于0.01时,说明证据可以很强的拒绝原假设。这等同于说,在原假设的情况下,出现这一组样本的概率可能最低达到0.01.(个人理解)当显著水平大于0.1时,不能拒绝原假设。