一、faster_rcnn_framework.py

本文详细分析了FasterRCNN的代码结构,包括FasterRCNNBase、TwoMLPHead、FastRCNNPredictor和FasterRCNN类。重点讨论了FasterRCNNBase中模型的构建和前向传播过程,以及在FasterRCNN中如何实例化和定义各个组件,如RPN、RoIHead和数据预处理。文章还提到了训练和推理模式下的不同行为,以及关键参数的作用。
摘要由CSDN通过智能技术生成

至此开始,仔细阅读faster_rcnn代码,按照逻辑来分别写出对代码的心得。

首先是faster_rcnn的框架部分,其中主要分为四个类,class FasterRCNNBase(nn.Module)、class TwoMLPHead(nn.Module)、class FastRCNNPredictor(nn.Module)、class FasterRCNN(FasterRCNNBase)。其中TwoMLPHead和FastRCNNPredictor是框架中的一部分就不仔细介绍了,他们会在FasterRCNN(FasterRCNNBase)被调用,

这部分代码可以说是FasterRCNNBase(nn.Module)这里面把整个算法的框架都定义了。全过程,但是在他的init函数里面,那些比如rpn,roihead,transform等都没有定义,然后就在FasterRCNN(FasterRCNNBase)里面把这些定义了。 (base可以理解成模板,按照模板去构造一个准确的frcnn ),具体实现就在FasterRCNN(FasterRCNNBase)部分,下面是他的具体代码加自己的理解注释

import warnings
from collections import OrderedDict
from typing import Tuple, List, Dict, Optional, Union

import torch
from torch import nn, Tensor
import torch.nn.functional as F
from torchvision.ops import MultiScaleRoIAlign

from .roi_head import RoIHeads
from .transform import GeneralizedRCNNTransform
from .rpn_function import AnchorsGenerator, RPNHead, RegionProposalNetwork

# faster_rcnn_framework.py:该文件实现了 Faster R-CNN 的整体网络结构,并定义了损失函数的计算方式,包括分类损失和边界框回归损失的计算。

class FasterRCNNBase(nn.Module):
    """
     按照FasterRCNN整个框架进行执行:将数据传入到backbone当中,然后将我们得到的特征图传入到rpn得到我们的proposal,
     再将proposal映射在特征图上的信息通过我们的roipooling以及展平处理、两个全连接处理、以及分类处理、边界框回归预测、对他进行一系列后处理等等(不包括图像中最后一步)
    Main class for Generalized R-CNN.

    Arguments:
        backbone (nn.Module):
        rpn (nn.Module):
        roi_heads (nn.Module): takes the features + the proposals from the RPN and computes
            detections / masks from it.
        transform (nn.Module): performs the data transformation from the inputs to feed into
            the model
    """

    def __init__(self, backbone, rpn, roi_heads, transform):
        super(FasterRCNNBase, self).__init__()
        self.transform = transform
        self.backbone = backbone
        self.rpn = rpn
        self.roi_heads = roi_heads
        # used only on torchscript mode
        self._has_warned = False

    @torch.jit.unused
    def eager_outputs(self, losses, detections):
        # type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Union[Dict[str, Tensor], List[Dict[str, Tensor]]]
        if self.training:
            return losses

        return detections

    def forward(self, images, targets=None):
        # type: (List[Tensor], Optional[List[Dict[str, Tensor]]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]
        """
        Arguments:
            images (list[Tensor]): images to be processed
            targets (list[Dict[Tensor]]): ground-truth boxes present in the image (optional)

        Returns:
            result (list[BoxList] or dict[Tensor]): the output from the model.
                During training, it returns a dict[Tensor] which contains the losses.
                During testing, it returns list[BoxList] contains additional fields
                like `scores`, `labels` and `mask` (for Mask R-CNN models).

        """
        if self.training and targets is None:
            raise ValueError("In training mode, targets should be passed")

        if self.training:
            assert targets is not None
            for target in targets:         # 进一步判断传入的target的boxes参数是否符合规定
                boxes = target["boxes"]
                if isinstance(boxes, torch.Tensor):
                    # box。每个box通常由四个值表示,即左上角点的x坐标、y坐标,以及右下角点的x坐标、y坐标。因此,一个box通常用一个四元组来表示,例如[x1, y1, x2, y2]
                    # 对boxes的要求是一个torch.Tensor类型的张量,并且必须满足形状要求,即张量维度必须是[N, 4],其中N为目标数量,4表示每个目标对应的边界框(box)参数的维度。
                    if len(boxes.shape) != 2 or boxes.shape[-1] != 4:
                        raise ValueError("Expected target boxes to be a tensor"
                                         "of shape [N, 4], got {:}.".format(
                                          boxes.shape))
                else:
                    raise ValueError("Expected target boxes to be of type "
                                     "Tensor, got {:}.".format(type(boxes)))

        original_image_sizes = torch.jit.annotate(List[Tuple[int, int]], [])
        for img in images:
            val = img.shape[-2:]
            assert len(val) == 2  # 防止输入的是个一维向量
            original_image_sizes.append((val[0], val[1]))
        # original_image_sizes = [img.shape[-2:] for img in images]

    # 只有在经过这个transform处理后得到的数据才是一个真正的batch数据

        images, targets = self.transform(images, targets)  # 对图像进行预处理

        # print(images.tensors.shape)
        features = self.backbone(images.tensors)  # 将图像输入backbone得到特征图
        if isinstance(features, torch.Tensor):  # 若只在一层特征层上预测,将feature放入有序字典中,并编号为‘0’
            features = OrderedDict([('0', features)])  # 若在多层特征层上预测,传入的就是一个有序字典

        # 将特征层以及标注target信息传入rpn中
        # proposals: List[Tensor], Tensor_shape: [num_proposals, 4],
        # 每个proposals是绝对坐标,且为(x1, y1, x2, y2)格式
        proposals, proposal_losses = self.rpn(images, features, targets)

        # 将rpn生成的数据以及标注target信息传入fast rcnn后半部分
        detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)

        # 对网络的预测结果进行后处理(主要将bboxes还原到原图像尺度上)
        detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        # 统计我们的损失,先是统计我们的fastrcnn的损失(detector_losses),以及我们的rpn损失(proposal_losses)

        losses = {}
        losses.update(detector_losses)
        losses.update(proposal_losses)

        if torch.jit.is_scripting():
            if not self._has_warned:
                warnings.warn("RCNN always returns a (Losses, Detections) tuple in scripting")
                self._has_warned = True
            return losses, detections
        else:
            return self.eager_outputs(losses, detections)

        # if self.training:
        #     return losses
        #
        # return detections


class TwoMLPHead(nn.Module):
    """
    Standard heads for FPN-based models
    该类是 Faster R-CNN 中 RoI Head 的一个子组件,它包含了两个全连接层,用于对 RoI 特征进行进一步处理和提取。该类实现了 RoI 特征的前向传播过程。
    Arguments:
        in_channels (int): number of input channels
        representation_size (int): size of the intermediate representation
    """

    def __init__(self, in_channels, representation_size):
        super(TwoMLPHead, self).__init__()

        self.fc6 = nn.Linear(in_channels, representation_size)
        self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):
        x = x.flatten(start_dim=1)

        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))

        return x


class FastRCNNPredictor(nn.Module):
    """
    该类是 Faster R-CNN 中 RoI Head 的另一个子组件,用于对 RoI 特征进行分类和边界框回归。该类包含了一个全连接层用于分类,一个全连接层用于边界框回归。
    该类实现了 RoI Head 中分类和边界框回归的前向传播过程。
    Standard classification + bounding box regression layers
    for Fast R-CNN.

    Arguments:
        in_channels (int): number of input channels
        num_classes (int): number of output classes (including background)
    """

    def __init__(self, in_channels, num_classes):
        super(FastRCNNPredictor, self).__init__()
        self.cls_score = nn.Linear(in_channels, num_classes)
        self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):
        if x.dim() == 4:
            assert list(x.shape[2:]) == [1, 1]
        x = x.flatten(start_dim=1)
        scores = self.cls_score(x)
        bbox_deltas = self.bbox_pred(x)

        return scores, bbox_deltas


class FasterRCNN(FasterRCNNBase):
    """
    Implements Faster R-CNN.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:
        - boxes (FloatTensor[N, 4]): the ground-truth boxes in [x1, y1, x2, y2] format, with values
          between 0 and H and 0 and W
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
        - boxes (FloatTensor[N, 4]): the predicted boxes in [x1, y1, x2, y2] format, with values between
          0 and H and 0 and W
        - labels (Int64Tensor[N]): the predicted labels for each image
        - scores (Tensor[N]): the scores or each prediction

    Arguments:
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain a out_channels attribute, which indicates the number of output
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or and OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
            If box_predictor is specified, num_classes should be None.
        min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
        max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN
        rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training
        rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing
        rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training
        rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing
        rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
        rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
        rpn_score_thresh (float): during inference, only return proposals with a classification score
            greater than rpn_score_thresh
        box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
            the locations indicated by the bounding boxes
        box_head (nn.Module): module that takes the cropped feature maps as input
        box_predictor (nn.Module): module that takes the output of box_head and returns the
            classification logits and box regression deltas.
        box_score_thresh (float): during inference, only return proposals with a classification score
            greater than box_score_thresh
        box_nms_thresh (float): NMS threshold for the prediction head. Used during inference
        box_detections_per_img (int): maximum number of detections per image, for all classes.
        box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be
            considered as positive during training of the classification head
        box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be
            considered as negative during training of the classification head
        box_batch_size_per_image (int): number of proposals that are sampled during training of the
            classification head
        box_positive_fraction (float): proportion of positive proposals in a mini-batch during training
            of the classification head
        bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the
            bounding boxes

    """

    def __init__(self, backbone, num_classes=None,
                 # transform parameter
                 min_size=800, max_size=1333,      # 预处理resize时限制的最小尺寸与最大尺寸
                 image_mean=None, image_std=None,  # 预处理normalize时使用的均值和方差
                 # RPN parameters
                 rpn_anchor_generator=None, rpn_head=None,
                 # 在rpn当中,通过我们的预测信息以及anchor生成器生成的一系列anchor,我们就能得到所有预测的proposal。
                 # 这里就有很多proposal,我们对他进行过滤(其中之一是根据score去筛除一部分),筛选之后我们再进行nms处理。
                 rpn_pre_nms_top_n_train=2000, rpn_pre_nms_top_n_test=1000,    # rpn中在nms处理前保留的proposal数(根据score)
                 # 这里为什么在nms处理前后的proposal数量相同呢?原因是:主要是针对带有FPN的网络,FPN有多个预测特征层,每层在nms前都保留2000个,加起来就上万了。然后在通过nms保留2000个
                 rpn_post_nms_top_n_train=2000, rpn_post_nms_top_n_test=1000,  # rpn中在nms处理后保留的proposal数(nms:非极大值抑制处理)
                 rpn_nms_thresh=0.7,  # rpn中进行nms处理时使用的iou阈值
                 rpn_fg_iou_thresh=0.7, rpn_bg_iou_thresh=0.3,  # rpn计算损失时,采集正负样本设置的阈值
                 rpn_batch_size_per_image=256, rpn_positive_fraction=0.5,  # rpn计算损失时采样的样本数,以及正样本占总样本的比例
                 rpn_score_thresh=0.0,
                 # Box parameters
                 # 下面是roihead一系列的参数设置

                 # box_roi_pool对应于pooling层、box_head对应于TWOMLHead层、box_predictor对应于那两个全连接层(预测类别概率、边界框回归参数)
                 box_roi_pool=None, box_head=None, box_predictor=None,
                 # 下面的是处理Postprocess Detections(Filter low score object,NMS...)部分
                 # 移除低目标概率      fast rcnn中进行nms处理的阈值   对预测结果根据score排序取前100个目标
                 box_score_thresh=0.05, box_nms_thresh=0.5, box_detections_per_img=100,
                 box_fg_iou_thresh=0.5, box_bg_iou_thresh=0.5,   # fast rcnn计算误差时,采集正负样本设置的阈值
                 box_batch_size_per_image=512, box_positive_fraction=0.25,  # fast rcnn计算误差时采样的样本数,以及正样本占所有样本的比例
                 bbox_reg_weights=None):
        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels"
                "specifying the number of output channels  (assumed to be the"
                "same for all the levels"
            )

        assert isinstance(rpn_anchor_generator, (AnchorsGenerator, type(None)))
        assert isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None)))

        if num_classes is not None:
            if box_predictor is not None:
                raise ValueError("num_classes should be None when box_predictor "
                                 "is specified")
        else:
            if box_predictor is None:
                raise ValueError("num_classes should not be None when box_predictor "
                                 "is not specified")

        # 预测特征层的channels
        out_channels = backbone.out_channels

        # 若anchor生成器为空,则自动生成针对resnet50_fpn的anchor生成器
        # 在mobilenetv2里面已经有了定义,所有这段话是专门给resnet50_FPN定义的
        # 在这里每个滑动窗口都会预测5*3个anchor的一系列对应参数,然后这里的sizes每一个都是元祖,和mobile不一样
        # 一共有五种尺寸的anchor,分别对应几个特征层,比如对于我们尺寸最大的特征层(也就是说他拥有最高细腻度的特征层我们就预测最小的目标,对于我们的最顶层,也就是他的特征图已经缩到比较小的尺寸了、细腻度比较低,就在他上面预测大目标。
        if rpn_anchor_generator is None:
            anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
            rpn_anchor_generator = AnchorsGenerator(
                anchor_sizes, aspect_ratios
            )

        # 生成RPN通过滑动窗口预测网络部分
        if rpn_head is None:
            rpn_head = RPNHead(
                out_channels, rpn_anchor_generator.num_anchors_per_location()[0]
            )

        # 默认rpn_pre_nms_top_n_train = 2000, rpn_pre_nms_top_n_test = 1000,
        # 默认rpn_post_nms_top_n_train = 2000, rpn_post_nms_top_n_test = 1000,
        rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
        rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

        # 定义整个RPN框架
        rpn = RegionProposalNetwork(
            rpn_anchor_generator, rpn_head,
            rpn_fg_iou_thresh, rpn_bg_iou_thresh,
            rpn_batch_size_per_image, rpn_positive_fraction,
            rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh,
            score_thresh=rpn_score_thresh)

        #  Multi-scale RoIAlign pooling
        if box_roi_pool is None:
            box_roi_pool = MultiScaleRoIAlign(
                featmap_names=['0', '1', '2', '3'],  # 在哪些特征层进行预测 ,官网实现pooling层没有放进去(因为经过测试polling作用不大)
                output_size=[7, 7],
                sampling_ratio=2)

        # fast RCNN中roi pooling后的展平处理两个全连接层部分
        if box_head is None:
            resolution = box_roi_pool.output_size[0]  # 默认等于7
            representation_size = 1024
            box_head = TwoMLPHead(
                out_channels * resolution ** 2,
                representation_size
            )

        # 在box_head的输出上预测部分
        if box_predictor is None:
            representation_size = 1024
            box_predictor = FastRCNNPredictor(
                representation_size,
                num_classes)

        # 将roi pooling, box_head以及box_predictor结合在一起
        roi_heads = RoIHeads(
            # box
            box_roi_pool, box_head, box_predictor,
            box_fg_iou_thresh, box_bg_iou_thresh,  # 0.5  0.5
            box_batch_size_per_image, box_positive_fraction,  # 512  0.25
            bbox_reg_weights,
            box_score_thresh, box_nms_thresh, box_detections_per_img)  # 0.05  0.5  100

        # 预处理的图像均值以及图像的方差直接使用的imagenet的均值和方差
        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]

        # 对数据进行标准化,缩放,打包成batch等处理部分
        # 对应图中的GeneralizedRCNNTransform (Normalize, Resize)模块(其实还包括了最后面的post process部分)
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

        super(FasterRCNN, self).__init__(backbone, rpn, roi_heads, transform)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值