CUDA 118 安装vllm

正文

如果使用vllm官方文档中的安装方法pip install vllm会默认使用CUDA12进行编译安装,导致安装失败。官方也提供了cuda118的安装方法:

# Install vLLM with CUDA 11.8.
export VLLM_VERSION=0.6.1.post1
export PYTHON_VERSION=310
pip install https://github.com/vllm-project/vllm/releases/download/v${VLLM_VERSION}/vllm-${VLLM_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux1_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118

但实际操作中也会出现一些问题,下面介绍一下我平时探索出的安装方法。

1. 下载cu118的vllm轮子

没有具体的包含所有whl的网站,大家可以去https://github.com/vllm-project/vllm/releases这个版本发布网站挨个点进去看一下,是否有所需的whl文件
在这里插入图片描述

下面给出一个最新的支持cu118的版本

python=312
vllm=0.6.1.post2
url=https://github.com/vllm-project/vllm/releases/download/v0.6.1.post2/vllm-0.6.1.post2+cu118-cp312-cp312-manylinux1_x86_64.whl

2. 下载cu118的pytorch轮子

这里给出一个离线下载pytorch的网站https://download.pytorch.org/whl/torch/。最新版本的vllm基本都需要pytorch版本2.4.0或者2.5.0。选择合适的whl进行下载。
在这里插入图片描述

3. 离线安装

下载完上面的两个文件之后可以进行离线安装,安装顺序为先安装torch,然后再安装vllm。安装完torch之后,安装vllm的时候就会检测到torch已经安装并且满足要求,就会略过torch的安装,这也是核心所在。

pip install torch.whl
pip install vllm.whl
# 这里torch、vllm指上面的离线下载的文件,请替换成你自己的文件

最后安装成功!可以开心的使用了😀

### 关于CUDA 11.7与vLLM安装配置 #### 配置环境准备 为了确保能够顺利运行基于CUDA 11.7的vLLM模型,在开始之前需确认已正确安装NVIDIA驱动程序以及对应的CUDA Toolkit版本。通过命令`nvcc -V`可以验证当前系统的CUDA编译器工具链是否为期望的11.7版次[^1]。 ```bash (base) PS C:\Users\****> nvcc -V nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2022 NVIDIA Corporation Built on Wed_Jun__8_16:59:34_Pacific_Daylight_Time_2022 Cuda compilation tools, release 11.7, V11.7.99 Build cuda_11.7.r11.7/compiler.31442593_0 ``` #### 创建适合的开发环境 考虑到不同框架对于特定CUDA版本的需求差异,建议采用容器化的方式构建独立的工作区。当涉及到较新的库如vLLM时,应优先考虑官方推荐或社区广泛认可的基础镜像来减少潜在的技术障碍。例如,在某些场景下可能需要避开旧版CUDA组合以规避可能出现的兼容性挑战[^2]。 #### 安装PyTorch及其他依赖项 针对已经预设好CUDA 11.7环境的情况,可以直接利用Conda渠道获取匹配此版本的PyTorch发行包以及其他必要的软件组件。值得注意的是,如果项目中有其他严格限定CUDA版本需求的部分,则应当仔细评估现有硬件条件下的最佳实践方案[^3]。 ```yaml name: vllm-env channels: - pytorch dependencies: - python=3.9 - cudatoolkit=11.7 - pytorch>=1.12.0 - torchvision - torchaudio - pip: - vllm==<latest_version> ``` 上述YAML文件展示了如何定义一个新的Conda虚拟环境中包含适用于CUDA 11.7平台上的最新稳定版PyTorch及其扩展模块,并引入了目标应用——vLLM的相关资源。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值