论文《NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE》总结

该论文探讨了神经机器翻译模型,通过联合学习对齐和翻译来改进传统固定长度向量的方法。研究发现,固定长度向量在处理长句子时效果下降,为此提出的新模型能自动搜索源句子的相关部分进行预测,提高了翻译效果,尤其适用于长句子翻译。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

论文来源:Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

原文链接:

摘要

神经机器翻译最近被提出用于机器翻译。与传统的统计机器翻译不同,神经机器翻译旨在构建一个神经网络能够共同联调最大化翻译效果。最近提出的神经机器翻译模型经常包括一类编码器和解码器,把一个源句子编码为一个固定长度的向量,解码器产生翻译。但是我们认为生成一个固定长度的向量是一个瓶颈,propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly。最后我们的模型取得了显著的效果。

1.Introduction

  • 神经机器翻译被提出(2013, 2014ÿ
### 关于注意力机制的相关论文深度学习领域,注意力机制已经成为许多研究的核心主题之一。以下是一些与注意力机制相关的经典和前沿论文: #### 经典注意力机制论文 1. **Neural Machine Translation by Jointly Learning to Align and Translate** 这篇论文首次引入了序列到序列模型中的注意力机制概念[^3]。它通过计算源句中每个词的重要性来动态调整翻译过程中的权重分配。 2. **Attention Is All You Need** 此论文提出了 Transformer 架构,完全基于自注意力机制构建而成,摒弃了传统的循环神经网络结构[^4]。Transformer 已成为自然语言处理领域的标准架构之一。 #### 局部注意力改进方向 根据最新研究成果,《Efficient Local Attention for Deep Convolutional Neural Networks》提出了一种名为高效局部注意力(ELA)的方法[^2]。该方法针对 Coordinate Attention 的不足进行了优化,并结合一维卷积和 Group Normalization 技术增强了特征表达能力。 以下是实现 ELA 方法的一个简化代码示例: ```python import torch.nn as nn class EfficientLocalAttention(nn.Module): def __init__(self, channels, groups=8): super(EfficientLocalAttention, self).__init__() self.group_norm = nn.GroupNorm(groups, channels) self.conv1d = nn.Conv1d(channels, channels, kernel_size=3, padding=1) def forward(self, x): x = self.group_norm(x) x = self.conv1d(x.permute(0, 2, 1)).permute(0, 2, 1) return x ``` #### 可视化注意力机制的研究 另一项重要工作来自 Ba et al., 提出了 Layer-wise Relevance Propagation (LRP),用于解释深度神经网络中的决策路径并可视化注意力分布[^5]。 --- ### 注意力机制的应用范围扩展 除了上述理论基础外,注意力机制还被应用于多个具体场景,例如时间序列预测、推荐系统以及强化学习等领域。这些应用进一步推动了其发展和技术成熟度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值