金融学习之四——插值法求远期国债收益率

今天来个简单的,使用插值法求远期国债利率。
插值法使用的是scipy模块中的interpolate子模块的interp1d函数,注意这里的是数字1,不是英文字母l。函数的格式为interp1d(x,y,kind),x、y为给定数据,kind是插值方法。
kind参数如下:

参数名称插值方法
nearest最邻近插值法
zero0阶样条曲线插值法
slinear1阶样条曲线插值法
quadratic2阶样条曲线插值法
cubic3阶样条曲线插值法

假设有如下远期国债到期收益率:

期限0.25年半年0.75年1年3年5年
远期收益率2.7344%2.7898%2.8382%2.882%3.0414%3.1746%

可以发现在表中缺少2年期和4年期的远期国债收益率,现在就可以通过数据拟合出曲线并求出对应的收益率。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import interpolate
#下面是显示中文必备代码
from pylab import mpl
mpl.rcParams['font.sans-serif']=['SimHei']
mpl.rcParams['axes.unicode_minus']=False

接下来将表中数据以列表形式处理:

#原有期限
t=np.array([0.25,0.5,0.75,1.0,3.0,5.0])
#新期限
t_new=np.array([0.25,0.5,0.75,1.0,2.0,3.0,4.0,5.0])
#原有到期收益率
rates=np.array([0.27344,0.27898,0.28382,0.2882,0.30414,0.31746])

设置好5种插值方法,以及线形的格式

types=['nearest','zero','slinear','quadratic','cubic']
k1=['-','--','-.',':','-']
k2=['*','h','+','d','s']

计算并绘图:
这里设置了一堆线形,主要是为了区分不同的数据,毕竟如果是同样的线形是无法区分开的。

plt.figure(figsize=(10,8))
for i in range(len(types)):
    f=interpolate.interp1d(x=t,y=rates,kind=types[i])
    rates_new=f(t_new)
    print(types[i],rates_new)
    plt.plot(t_new,rates_new,k1[i])
    plt.plot(t_new,rates_new,k2[i],label=types[i])
    plt.xticks(fontsize=14)
    plt.xlabel(u'期限',fontsize=14)
    plt.yticks(fontsize=14)
    plt.ylabel(u'收益率',fontsize=14,rotation=0)
    plt.legend(loc=0,fontsize=14)
    plt.grid()

结果如下:
在这里插入图片描述
在这里插入图片描述
可以看出,nearest和zero法得到的结果基本相同,而其他方法得到的结果有些不同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值