拿到数据后,数据中可能会存在一些超大或极小的值,这些值与其他的值离得较远,显得格格不入,我们称其为离群点,有时也称为异常点。对于这些值,它的存在会导致影响最终的分析结果,带偏我们的分析。举个简单的例子,10个人的收入分别为2000,2500,2300,2425,2512,2375,2700,2265,2345,10000000,只算前9个,平均值就是2380,但加上最后一个,平均值就是1002144.2,就可能严重带偏最后分析的结果。因此,对于这样的数据,我们需要将其去除或修改。
(一)数据去极值
数据去极值的方法有很多,我们介绍其中3种:绝对值差中位数法(MAD),3西格玛法和百分位法。
(1)绝对值差中位数法(MAD)
绝对值差中位数法MAD处理步骤:
• Step 1:找出所有因子的中位数𝐹𝑚𝑒𝑑𝑖𝑎𝑛;
• Step 2:得到每个因子与中位数的绝对偏差值 |𝐹𝑖 − 𝐹𝑚𝑒𝑑𝑖𝑎𝑛|;
• Step 3:得到绝对偏差值的中位数𝑀𝐴𝐷;
• Step 4:确定阈值参数 𝑛,对超出范围 [ 𝐹𝑚𝑒𝑑𝑖𝑎𝑛 − 𝑛 ⋅ 𝑀𝐴𝐷, 𝐹𝑚𝑒𝑑𝑖𝑎𝑛 + 𝑛 ⋅ 𝑀𝐴𝐷 ]的因子值做调整。
def mad(df,n):
median=df.quantile(0.5)
new_median=abs(df - median).quantile(0.5)
up=median+n*new_median
down=median-n*new_median
print(median,up,down)
return df.clip(down,up,axis=1)
(2)3西格玛处理步骤:
• Step 1:计算出因子的平均值𝐹𝑚𝑒𝑎𝑛与标准差𝜎;
• Step 2:确定阈值参数 𝑛(默认为3),对超出范围 𝐹𝑚𝑒𝑎𝑛 − 𝑛𝜎, 𝐹𝑚𝑒𝑎𝑛 + 𝑛𝜎 的因子值做调整.
def threesigma(df,n):
mean=df.mean()
std=df.std()
up