力扣解法汇总2029-石子游戏 IX

原题链接:力扣


描述:

Alice 和 Bob 再次设计了一款新的石子游戏。现有一行 n 个石子,每个石子都有一个关联的数字表示它的价值。给你一个整数数组 stones ,其中 stones[i] 是第 i 个石子的价值。

Alice 和 Bob 轮流进行自己的回合,Alice 先手。每一回合,玩家需要从 stones 中移除任一石子。

如果玩家移除石子后,导致 所有已移除石子 的价值 总和 可以被 3 整除,那么该玩家就 输掉游戏 。
如果不满足上一条,且移除后没有任何剩余的石子,那么 Bob 将会直接获胜(即便是在 Alice 的回合)。
假设两位玩家均采用 最佳 决策。如果 Alice 获胜,返回 true ;如果 Bob 获胜,返回 false 。

示例 1:

输入:stones = [2,1]
输出:true
解释:游戏进行如下:
- 回合 1:Alice 可以移除任意一个石子。
- 回合 2:Bob 移除剩下的石子。 
已移除的石子的值总和为 1 + 2 = 3 且可以被 3 整除。因此,Bob 输,Alice 获胜。
示例 2:

输入:stones = [2]
输出:false
解释:Alice 会移除唯一一个石子,已移除石子的值总和为 2 。 
由于所有石子都已移除,且值总和无法被 3 整除,Bob 获胜。
示例 3:

输入:stones = [5,1,2,4,3]
输出:false
解释:Bob 总会获胜。其中一种可能的游戏进行方式如下:
- 回合 1:Alice 可以移除值为 1 的第 2 个石子。已移除石子值总和为 1 。
- 回合 2:Bob 可以移除值为 3 的第 5 个石子。已移除石子值总和为 = 1 + 3 = 4 。
- 回合 3:Alices 可以移除值为 4 的第 4 个石子。已移除石子值总和为 = 1 + 3 + 4 = 8 。
- 回合 4:Bob 可以移除值为 2 的第 3 个石子。已移除石子值总和为 = 1 + 3 + 4 + 2 = 10.
- 回合 5:Alice 可以移除值为 5 的第 1 个石子。已移除石子值总和为 = 1 + 3 + 4 + 2 + 5 = 15.
Alice 输掉游戏,因为已移除石子值总和(15)可以被 3 整除,Bob 获胜。
 

提示:

1 <= stones.length <= 105
1 <= stones[i] <= 104


来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/stone-game-ix
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题思路:

* 解题思路:
* 第一,数字类型有很多,但是其实我们可以分个类,因为是按照3的倍数来算,所以18其实和3的作用是一样的,1,4,7,10...的作用也都是一样的。
* 所以我们只要按照%3的余数来分类,分为0,1,2三类就好。
* 第二,如果选中0的话,那么等于把当前的位置交给了对象。同理,对面也可以选择0把选择权交回。所以我们只要统计0的次数是否是偶数即可。奇数代表有选择权交由对方的权利,偶数则没有。
* 第三,这样,剩下的就是1,2两类的数量了。假设我第一轮选择的1或者2是一个必胜的结果,那么后面不论对面怎么选,我都选一个可以和对方选择和为3的数字。所以中间这些步骤都可以省略,
* 所以,1个1,N个2的最终结果,和11个1,10+N个2的结果是一样的。同理,N个1,1个2的最终结果和10+N个1,11个2的结果是一样的。
* 第四,1个1,N个2的结果,如果num0的数量为偶数时。一定是先选择的赢。2个1,1个2,也一定是先选择的赢。因为先选择的只要选择那个唯一的1或者2,后选择的只能选择2或者1,则后选择的输。
* 第四,1个1,N个2的结果,如果num0的数量为技数时。则判断两者差值是否大于等于3,大于等于3时则先选择的人也一定赢。比如A选择2,B只能选择2,A选择1,B选择2,A选择0,则B选择2输掉比赛。
* 第六,如果1和2的数量有一方为0时,则判断1或者2的数量是否大于3即可。大于3的话,一定是先选择的人输。

代码:

public boolean stoneGameIX(int[] stones) {

        int num0 = 0;
        int num1 = 0;
        int num2 = 0;
        for (int i = 0; i < stones.length; i++) {
            int value = stones[i] % 3;
            if (value == 0) {
                num0++;
            } else if (value == 1) {
                num1++;
            } else {
                num2++;
            }
        }

        boolean firstSelectWin = num0 % 2 == 0;
        if (num1 == 0 && num2 == 0) {
            return false;
        }
        if (num1 > 0 && num2 > 0) {
            //a如果先选并且0的数量为偶数则一定赢
            if (firstSelectWin) {
                return true;
            }
            int abs = Math.abs(num1 - num2);
            if (abs >= 3) {
                return true;
            }
            return false;
        }
        if (num1 >= 3 || num2 >= 3) {
            return !firstSelectWin;
        }
        return false;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

失落夏天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值