CatBoost算法模型

  • CatBoost = Catgorical + Boost
  • 高效的处理分类特征(categorical features),首先对分类特征做统计,计算某个分类特征(category)出现的频率,然后加上超参数,生成新的数值型特征(numerical features)
  • 同时使用组合类别特征,丰富了特征维度
  • 采用的基模型是对称决策树,算法的参数少、支持分类变量通过可以防止过拟合
CatBoost对于分类特征多的数据,可以高效的处理,过拟合程度小,效果好

可参考:https://zhuanlan.zhihu.com/p/102540344

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值