- CatBoost = Catgorical + Boost
- 高效的处理分类特征(categorical features),首先对分类特征做统计,计算某个分类特征(category)出现的频率,然后加上超参数,生成新的数值型特征(numerical features)
- 同时使用组合类别特征,丰富了特征维度
- 采用的基模型是对称决策树,算法的参数少、支持分类变量通过可以防止过拟合
CatBoost对于分类特征多的数据,可以高效的处理,过拟合程度小,效果好
可参考:https://zhuanlan.zhihu.com/p/102540344