高等代数精解【8】

向量空间与矩阵

矩阵

一、 基础

  • 矩阵是一个按照长方阵列排列的复数或实数集合。在数学中,矩阵通常表示为一个矩形数组,其中每个元素由行号和列号唯一确定。
  • 例如,一个m行n列的矩阵可以表示为 A = [ a i j ] A = [a_{ij}] A=[aij],其中 a i j a_{ij} aij表示矩阵A中第i行第j列的元素。这一概念最早由19世纪英国数学家凯利提出,并逐渐成为高等代数学中的常见工具。
  • 一个 m × n m\times n m×n矩阵
    A = [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a m 1 a n 2 . . . a m n ] A 的第 K 列表示为: a k = [ a 1 k a 2 k . . . a m k ] A=\begin{bmatrix} a_{11} & a_{12} &...&a_{1n}\\ a_{21} & a_{22} &...&a_{2n}\\ ...&...&...&...\\ a_{m1} & a_{n2} &...&a_{mn}\\ \end{bmatrix} \\A的第K列表示为: \\a_k=\begin{bmatrix} a_{1k} \\ a_{2k} \\ ...\\ a_{mk} \\ \end{bmatrix} A= a11a21...am1a12a22...an2............a1na2n...amn A的第K列表示为:ak= a1ka2k...amk
  • 矩阵A的最大线性无关列的最大数目称为A的秩rankA,可看出,rank A正是 s p a n [ a 1 , a 2 , . . . , a n ] span[a_1,a_2,...,a_n] span[a1,a2,...,an]的维数。
  • 设 a 1 , a 2 , . . . , a k 是 R n 的任意向量, 它们所有线性组合的集合称为 a 1 , a 2 , . . . a k 张成的子空间。记为: s p a n [ a 1 , a 2 , . . . , a n ] = { Σ i = 1 k α i a i : α k ∈ R } 设a_1,a_2,...,a_k是R^n的任意向量, \\它们所有线性组合的集合称为a_1,a_2,...a_k张成的子空间。记为: \\span[a_1,a_2,...,a_n]=\{\Sigma_{i=1}^k \alpha_i a_i :\alpha_k \in R\} a1,a2,...,akRn的任意向量,它们所有线性组合的集合称为a1,a2,...ak张成的子空间。记为:span[a1,a2,...,an]={Σi=1kαiai:αkR}
  • 子空间V的所有基都包含相同数量的向量, 这一数量称为V的维数,记为dimV。

二、矩阵的表示

矩阵通常用大写字母(如A、B、C等)表示,而矩阵中的元素则用小写字母(如a_ij)表示,其中i和j分别代表元素的行号和列号。矩阵可以用方括号([ ])或圆括号(( ))括起来,以区分矩阵和其他数学对象。例如,一个2行3列的矩阵可以表示为:

A = ( a 11 a 12 a 13 a 21 a 22 a 23 ) A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} A=(a11a21a12a22a13a23)

或者

A = [ a 11 a 12 a 13 a 21 a 22 a 23 ] A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} A=[a11a21a12a22a13a23]

三、列向量的定义

在线性代数中,列向量是一个特殊的矩阵,它是一个n×1的矩阵,即矩阵由一个含有n个元素的列所组成。列向量通常用小写字母(如a、b、c等)表示,并用箭头(→)或加粗表示其向量性质。例如,一个3维列向量可以表示为:

a = ( a 1 a 2 a 3 ) \mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} a= a1a2a3

或者

a ⃗ = ( a 1 a 2 a 3 ) \vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} a = a1a2a3

四、矩阵的性质

矩阵具有多种性质,以下是一些常见的性质:

  1. 矩阵的加法:两个同型矩阵(即行数和列数都相同的矩阵)可以进行加法运算,对应位置的元素相加得到新的矩阵。

  2. 矩阵的数乘:矩阵可以与一个实数相乘,得到一个新的矩阵,新矩阵的每个元素都是原矩阵对应位置的元素与这个实数的乘积。

  3. 矩阵的乘法:矩阵的乘法不是简单的元素对应相乘,而是满足一定规则的运算。只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘。乘积矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

  4. 矩阵的转置:矩阵的转置是将矩阵的行和列互换得到的新矩阵。如果矩阵A的转置记为AT,则AT的第i行第j列元素是A的第j行第i列元素。

  5. 矩阵的秩:矩阵的秩是矩阵中线性独立的行(或列)的最大数目。它反映了矩阵的“非零”程度,是矩阵的一个重要属性。

  6. 对称矩阵:如果一个矩阵A满足A^T = A,则称A为对称矩阵。对称矩阵的主对角线上的元素是任意的,但其他元素在主对角线的两边成对出现。

  7. 正交矩阵:如果一个方阵A满足A^TA = I(I是单位矩阵),则称A为正交矩阵。正交矩阵的列向量和行向量都是单位向量,并且它们之间两两正交。

  8. 零矩阵和单位矩阵:零矩阵是所有元素都为0的矩阵,记为O;单位矩阵是主对角线上元素都为1,其余元素都为0的方阵,记为I。单位矩阵在矩阵乘法中起着类似于实数乘法中1的作用。

    以上是对矩阵的定义、表示、列向量以及矩阵性质的详细解释。矩阵作为数学中的一个重要工具,具有广泛的应用和丰富的性质。

矩阵的秩

秩的定义

矩阵的秩是线性代数中的一个重要概念,它表示矩阵中线性独立的行或列的最大数目。具体来说,矩阵A的秩r(A)定义为A中所有非零子式的最高阶数。如果A是n阶方阵,且其行列式|A|≠0,则称A为满秩矩阵,此时r(A)=n;如果|A|=0,则称A为降秩矩阵,此时r(A)<n。
矩阵的秩是矩阵理论中的一个核心概念,它反映了矩阵的非零子式的最高阶数。矩阵的秩具有许多重要的性质,这些性质在解决线性方程组、矩阵的逆、特征值等问题时非常有用。下面列举一些矩阵秩的基本性质和例题。

矩阵秩的性质

  1. 零矩阵的秩为0:任何 m × n m \times n m×n的零矩阵的秩都是0。
  2. 单位矩阵的秩 n × n n \times n n×n单位矩阵的秩为 n n n
  3. 矩阵的秩不超过其行数和列数:对于 m × n m \times n m×n矩阵 A A A,有 r ( A ) ≤ min ⁡ ( m , n ) r(A) \leq \min(m, n) r(A)min(m,n)
  4. 矩阵的秩在初等变换下不变:矩阵经过初等行(列)变换后,其秩不变。
  5. 矩阵乘积的秩:对于矩阵 A m × n A_{m \times n} Am×n B n × p B_{n \times p} Bn×p,有 r ( A B ) ≤ min ⁡ ( r ( A ) , r ( B ) ) r(AB) \leq \min(r(A), r(B)) r(AB)min(r(A),r(B))
  6. 矩阵的转置秩不变 r ( A T ) = r ( A ) r(A^T) = r(A) r(AT)=r(A)
  7. 满秩矩阵:如果 r ( A ) = min ⁡ ( m , n ) r(A) = \min(m, n) r(A)=min(m,n),则称 A A A为满秩矩阵。
  8. 子矩阵的秩:任何矩阵的子矩阵的秩都不超过原矩阵的秩。

例题

例1:求矩阵 A = ( 1 2 3 2 4 6 3 6 9 ) A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} A= 123246369 的秩。

:观察矩阵 A A A,第二行是第一行的2倍,第三行是第一行的3倍,因此矩阵 A A A的行列式为0,且存在非零行向量可以被其他行向量线性表示。通过初等行变换,可以将矩阵 A A A化为 ( 1 2 3 0 0 0 0 0 0 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} 100200300 ,因此 r ( A ) = 1 r(A) = 1 r(A)=1

例2:设 A A A 3 × 4 3 \times 4 3×4矩阵, B B B 4 × 2 4 \times 2 4×2矩阵,且 A B = 0 AB = 0 AB=0,求 r ( A ) + r ( B ) r(A) + r(B) r(A)+r(B)的最大值。

:根据矩阵乘积的秩的性质,有 r ( A B ) ≤ min ⁡ ( r ( A ) , r ( B ) ) r(AB) \leq \min(r(A), r(B)) r(AB)min(r(A),r(B))。由于 A B = 0 AB = 0 AB=0,则 r ( A B ) = 0 r(AB) = 0 r(AB)=0。又因为 A A A 3 × 4 3 \times 4 3×4矩阵, B B B 4 × 2 4 \times 2 4×2矩阵,所以 r ( A ) ≤ 3 r(A) \leq 3 r(A)3 r ( B ) ≤ 2 r(B) \leq 2 r(B)2。为了使 r ( A ) + r ( B ) r(A) + r(B) r(A)+r(B)最大,需要 r ( A ) r(A) r(A) r ( B ) r(B) r(B)都尽可能大,但不超过它们的上界。因此, r ( A ) + r ( B ) r(A) + r(B) r(A)+r(B)的最大值为 3 + 2 = 5 3 + 2 = 5 3+2=5

这些性质和例题展示了矩阵秩在矩阵理论中的重要性及其在实际问题中的应用。

秩的计算方法

矩阵的秩可以通过多种方法计算,以下是一些常用的方法:

  1. 初等行变换法:通过初等行变换(如交换两行、某行乘以非零常数、某行加上另一行的倍数)将矩阵化为阶梯形矩阵,然后计算非零行的数目,即为矩阵的秩。

  2. 行列式法:对于方阵,可以通过计算其所有k阶子行列式的值(k从1到n),找到最大的非零子行列式的阶数,即为矩阵的秩。但这种方法对于大型矩阵来说计算量较大。

  3. 特征值法:对于方阵,矩阵的秩等于其非零特征值的个数。通过求解矩阵的特征值,可以确定非零特征值的个数,从而得到矩阵的秩。但这种方法需要矩阵是方阵,并且需要计算特征值,计算量也较大。

  4. 软件计算法:现代数学软件如MATLAB、NumPy等提供了计算矩阵秩的函数,可以直接使用这些函数计算矩阵的秩。这种方法简单快捷,特别适用于大型矩阵的计算。

例子与例题

例子:设矩阵A为

A = ( 3 2 1 1 1 2 − 3 2 4 4 − 2 3 ) A = \begin{pmatrix} 3 & 2 & 1 & 1 \\ 1 & 2 & -3 & 2 \\ 4 & 4 & -2 & 3 \end{pmatrix} A= 314224132123

这是一个3×4矩阵。利用初等行变换法,我们可以将其化为阶梯形矩阵,并计算非零行的数目来确定矩阵的秩。经过初等行变换后,矩阵A可以化为

B = ( 1 0 0 ∗ 0 1 0 ∗ 0 0 1 ∗ ) B = \begin{pmatrix} 1 & 0 & 0 & * \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{pmatrix} B= 100010001

(注意:这里的*表示变换后的具体数值,但不影响秩的计算)由于阶梯形矩阵B有3个非零行,所以矩阵A的秩r(A)=3。

例题:若矩阵A和B的秩分别为p和q,求矩阵AB的秩。

解:根据矩阵秩的性质,有 r ( A B ) ≤ m i n r ( A ) , r ( B ) r(AB)≤min{r(A),r(B)} r(AB)minr(A),r(B)。因此,矩阵AB的秩不大于p和q中的较小者。但需要注意的是,这个不等式并不总是取到等号,即 r ( A B ) 可能小于 m i n p , q r(AB)可能小于min{p,q} r(AB)可能小于minp,q。要确定 r ( A B ) r(AB) r(AB)的具体值,通常需要进一步分析矩阵A和B的具体结构或进行具体的计算。

以上就是对矩阵与秩的详细描述,包括定义、计算、例子和例题。希望这些信息能对您有所帮助。

参考文献

1.《最优化导论》
2. chatgpt,文心一言

  • 21
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值