高等代数精解【6】

线性空间

行列式

  • 1 , 2 , . . . , n 组成的不重复的有次序的排列称为 n 级排列, n 级排列共有 n ! 种。 1,2,...,n组成的不重复的有次序的排列称为n级排列,n级排列共有n!种。 1,2,...,n组成的不重复的有次序的排列称为n级排列,n级排列共有n!种。

  • 在 n 级排列中,若有较大的数排在较小的数前面为逆序,记为 τ ( x 1 , x 2 , . . . , x n ) 。 在n级排列中,若有较大的数排在较小的数前面为逆序,记为\tau(x_1,x_2,...,x_n)。 n级排列中,若有较大的数排在较小的数前面为逆序,记为τ(x1,x2,...,xn)

  • 若排列 x 1 , x 2 , . . . , x n 的逆序数 τ 为奇数,该排列为奇排列,若为偶数,该排列为偶排列。 若排列x_1,x_2,...,x_n的逆序数\tau为奇数,该排列为奇排列,若为偶数,该排列为偶排列。 若排列x1,x2,...,xn的逆序数τ为奇数,该排列为奇排列,若为偶数,该排列为偶排列。

  • a = 874235169 τ ( a ) = 0 + 1 + 1 + 1 + 0 + 0 + 1 + 0 + 0 = 4 这是偶排列 a=8 7 4 2 3 5 1 6 9 \\\tau(a)=0+1+1+1+0+0+1+0+0=4 \\这是偶排列 a=874235169τ(a)=0+1+1+1+0+0+1+0+0=4这是偶排列

  • 在数学中,n级排列(也称为n阶排列或n的阶乘)是指从n个不同元素中取出n个元素的所有排列方式的总数。这个总数可以通过计算n的阶乘(n!)来得到。

阶乘的定义是:

n ! = n × ( n − 1 ) × ( n − 2 ) × ⋯ × 3 × 2 × 1 n! = n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1 n!=n×(n1)×(n2)××3×2×1

例如,如果n=3,那么3级排列的总数是:

3 ! = 3 × 2 × 1 = 6 3! = 3 \times 2 \times 1 = 6 3!=3×2×1=6

这6种排列分别是:123,132,213,231,312,321。

对于更大的n值,n级排列的数量会迅速增加。例如,10级排列的总数是:

10 ! = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 3 , 628 , 800 10! = 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 3,628,800 10!=10×9×8×7×6×5×4×3×2×1=3,628,800

这意味着有3,628,800种不同的方式来排列10个不同的元素。

  • 任意两个元素对调,称为对换,其余元素位置保持不动。相邻两个元素对换叫相邻对换
  • 任一个排列经过一次对换后其奇偶性改变
  • n阶行列式
    ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 1 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ 的值为 Σ ( − 1 ) τ ( m 1 m 2 . . . m n ) a 1 m 1 a 2 m 2 . . . a n m n \begin{vmatrix} a_{11} & a_{12} &... &a_{1n} \\ a_{21} & a_{22} &... &a_{1n} \\ ... & ... &... &... &\\ a_{n1} & a_{n2} &... &a_{nn} \end{vmatrix} \\的值为\Sigma(-1)^{\tau(m_1m_2...m_n)}a_{1m_1}a_{2m_2}...a_{nm_n} a11a21...an1a12a22...an2............a1na1n...ann 的值为Σ(1)τ(m1m2...mn)a1m1a2m2...anmn
  • 利用行列式的定义来求一个 n × n n \times n n×n矩阵的行列式值,我们需要考虑矩阵中所有可能的 n ! n! n!个排列,并计算每个排列对应的项,最后将这些项按照排列的奇偶性加权求和。然而,对于较大的 n n n,这种方法在实际操作中非常繁琐且容易出错。不过,为了说明这个过程,我们可以以一个较小的矩阵为例。

示例:求 3 × 3 3 \times 3 3×3矩阵的行列式

考虑以下 3 × 3 3 \times 3 3×3矩阵:

A = ( a b c d e f g h i ) A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} A= adgbehcfi

步骤 1: 列出所有排列

对于 3 × 3 3 \times 3 3×3矩阵,有 3 ! = 6 3! = 6 3!=6个排列。这些排列是:

  1. ( 1 , 2 , 3 ) (1, 2, 3) (1,2,3)(恒等排列)
  2. ( 1 , 3 , 2 ) (1, 3, 2) (1,3,2)
  3. ( 2 , 1 , 3 ) (2, 1, 3) (2,1,3)
  4. ( 2 , 3 , 1 ) (2, 3, 1) (2,3,1)
  5. ( 3 , 1 , 2 ) (3, 1, 2) (3,1,2)
  6. ( 3 , 2 , 1 ) (3, 2, 1) (3,2,1)

步骤 2: 计算每个排列的符号和对应的乘积

对于每个排列,我们按照排列中的顺序选择矩阵的行和列来形成乘积,并乘以该排列的符号(偶排列为 + 1 +1 +1,奇排列为 − 1 -1 1)。

  • 对于排列 ( 1 , 2 , 3 ) (1, 2, 3) (1,2,3)(偶排列): sgn ( 1 , 2 , 3 ) ⋅ a 11 a 22 a 33 = + 1 ⋅ a e i \text{sgn}(1, 2, 3) \cdot a_{11}a_{22}a_{33} = +1 \cdot aei sgn(1,2,3)a11a22a33=+1aei

  • 对于排列 ( 1 , 3 , 2 ) (1, 3, 2) (1,3,2)(奇排列): sgn ( 1 , 3 , 2 ) ⋅ a 11 a 23 a 32 = − 1 ⋅ a f h \text{sgn}(1, 3, 2) \cdot a_{11}a_{23}a_{32} = -1 \cdot afh sgn(1,3,2)a11a23a32=1afh

类似地,我们可以计算其他排列对应的项。但为了避免冗长,这里只给出结果:

  • ( 2 , 1 , 3 ) (2, 1, 3) (2,1,3) − 1 ⋅ b d i -1 \cdot bdi 1bdi
  • ( 2 , 3 , 1 ) (2, 3, 1) (2,3,1) + 1 ⋅ b f g +1 \cdot bfg +1bfg
  • ( 3 , 1 , 2 ) (3, 1, 2) (3,1,2) − 1 ⋅ c d h -1 \cdot cdh 1cdh
  • ( 3 , 2 , 1 ) (3, 2, 1) (3,2,1) + 1 ⋅ c e g +1 \cdot ceg +1ceg

步骤 3: 求和

将所有项相加,得到行列式的值:

∣ A ∣ = a e i − a f h − b d i + b f g − c d h + c e g |A| = aei - afh- bdi + bfg - cdh + ceg A=aeiafhbdi+bfgcdh+ceg

或者,我们可以将其重写为更常见的行列式展开形式(按第一行展开):

∣ A ∣ = a ∣ e f h i ∣ − b ∣ d f g i ∣ + c ∣ d e g h ∣ |A| = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h\end{vmatrix} A=a ehfi b dgfi +c dgeh

= a ( e i − f h ) − b ( d i − f g ) + c ( d h − e g ) = a(ei - fh) - b(di - fg) + c(dh - eg) =a(eifh)b(difg)+c(dheg)

这就是利用行列式定义求解 3 × 3 3 \times 3 3×3矩阵行列式的过程。对于更大的矩阵,这个过程将变得更加复杂,因为需要枚举的排列数量会急剧增加。因此,在实际应用中,我们通常会使用更高效的算法(如高斯消元法、LU分解等)来计算行列式的值。

  • 1. ∣ 1 2 3 4 11 18 − 9 13 3 4 12 − 7 11 3 19 6 ∣ = ( − 1 ) τ ( 1234 ) 1 × 18 × 12 × 6 + ( − 1 ) τ ( 1243 ) 1 × 18 × − 7 × 19 + ( − 1 ) τ ( 1423 ) 1 × 13 × 4 × 19 + . . . = ( − 1 ) 0 1 × 18 × 12 × 6 + ( − 1 ) 1 1 × 18 × − 7 × 19 + ( − 1 ) 1 1 × 13 × 4 × 19 + . . . 1. \begin{vmatrix} 1 & 2 &3 &4 \\ 11 &18 & -9 & 13\\ 3 & 4 &12 &-7 \\ 11 &3 &19 &6 \end{vmatrix} \\=(-1)^{\tau(1234)}1\times18\times12\times6+(-1)^{\tau(1243)}1\times18\times -7 \times 19 \\+(-1)^{\tau(1423)}1\times13\times 4 \times 19+... \\=(-1)^01\times18\times12\times6+(-1)^11\times18\times -7 \times 19 \\+(-1)^{1}1\times13\times 4 \times 19+... 1. 1113112184339121941376 =(1)τ(1234)1×18×12×6+(1)τ(1243)1×18×7×19+(1)τ(1423)1×13×4×19+...=(1)01×18×12×6+(1)11×18×7×19+(1)11×13×4×19+...

  • 利用行列式的定义(特别是通过代数余子式)来计算一个 n n n阶行列式,

我们主要依赖于拉普拉斯(Laplace)展开定理或按行(列)展开的方法。但在这里,为了简化说明,我将以按第一行展开为例来展示如何计算一个 n n n阶行列式。

(1) 设有一个 n n n阶行列式 D D D,其元素为 a i j a_{ij} aij(其中 i , j = 1 , 2 , … , n i, j = 1, 2, \ldots, n i,j=1,2,,n),则按第一行展开,行列式 D D D可以表示为:

D = ∑ j = 1 n a 1 j A 1 j D = \sum_{j=1}^{n} a_{1j} A_{1j} D=j=1na1jA1j

其中, a 1 j a_{1j} a1j是第一行第 j j j列的元素,而 A 1 j A_{1j} A1j是元素 a 1 j a_{1j} a1j的代数余子式,即去掉第1行和第 j j j列后得到的 ( n − 1 ) (n-1) (n1)阶行列式的值,并乘以 ( − 1 ) ( 1 + j ) (-1)^{(1+j)} (1)(1+j)(即根据元素 a 1 j a_{1j} a1j的位置决定的符号)。

(2) 步骤详解

确定第一行的元素:首先,列出第一行的所有元素 a 11 , a 12 , … , a 1 n a_{11}, a_{12}, \ldots, a_{1n} a11,a12,,a1n

计算代数余子式:对于第一行的每一个元素 a 1 j a_{1j} a1j,计算其代数余子式 A 1 j A_{1j} A1j。这通常涉及到计算一个 ( n − 1 ) (n-1) (n1)阶行列式。

应用符号规则:每个元素 a 1 j a_{1j} a1j与其代数余子式 A 1 j A_{1j} A1j相乘时,要乘以 ( − 1 ) ( 1 + j ) (-1)^{(1+j)} (1)(1+j)

求和:将上述所有乘积相加,得到行列式 D D D的值。

(3)示例

考虑一个3阶行列式:

D = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ D = \left| \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right| D= a11a21a31a12a22a32a13a23a33

按第一行展开,我们有:

D = a 11 ∣ a 22 a 23 a 32 a 33 ∣ − a 12 ∣ a 21 a 23 a 31 a 33 ∣ + a 13 ∣ a 21 a 22 a 31 a 32 ∣ D = a_{11} \left| \begin{array}{cc} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array} \right| - a_{12} \left| \begin{array}{cc} a_{21} & a_{23} \\ a_{31} & a_{33} \end{array} \right| + a_{13} \left| \begin{array}{cc} a_{21} & a_{22} \\ a_{31} & a_{32} \end{array} \right| D=a11 a22a32a23a33 a12 a21a31a23a33 +a13 a21a31a22a32

这里,每个 2 × 2 2 \times 2 2×2行列式都是 a 1 j a_{1j} a1j的代数余子式,并且乘以了相应的 ( − 1 ) ( 1 + j ) (-1)^{(1+j)} (1)(1+j)

注意

  • 当行列式的阶数较高时,直接按定义计算可能会非常繁琐。在实际应用中,通常会寻找行列式的特殊性质(如三角行列式、范德蒙德行列式等)或使用行列式的性质(如行交换、倍加行等)进行化简。
  • 计算机程序(如MATLAB、Python的NumPy库等)通常使用更高效的算法(如LU分解、高斯消元法等)来计算行列式的值。
  • 拉普拉斯(Laplace)展开定理
    是计算行列式的一种重要方法,它允许我们将一个 n n n阶行列式按某一行或某一列展开为较低阶行列式的和。这种方法特别有用,因为它可以将一个复杂的问题分解为更小、更容易处理的问题。

拉普拉斯展开定理的基本形式

对于一个 n n n阶行列式 D D D,如果我们选择第 k k k行进行展开(类似地,也可以选择列),那么 D D D可以表示为:

D = ∑ j = 1 n a k j A k j D = \sum_{j=1}^{n} a_{kj} A_{kj} D=j=1nakjAkj

其中, a k j a_{kj} akj是第 k k k行第 j j j列的元素,而 A k j A_{kj} Akj是去掉第 k k k行和第 j j j列后得到的 ( n − 1 ) (n-1) (n1)阶行列式的代数余子式。注意,这里还需要乘以 ( − 1 ) ( k + j ) (-1)^{(k+j)} (1)(k+j)来确保符号正确。

代数余子式的定义

代数余子式 A i j A_{ij} Aij是原行列式 D D D中去掉第 i i i行和第 j j j列后,剩余元素按原顺序构成的 ( n − 1 ) (n-1) (n1)阶行列式的值,再乘以 ( − 1 ) ( i + j ) (-1)^{(i+j)} (1)(i+j)

使用拉普拉斯展开计算 n n n阶行列式的步骤

  1. 选择一行或一列:首先,选择你想要展开的行或列。这通常基于行列式中元素的复杂度或已知的特殊性质。

  2. 计算代数余子式:对于选定的行(或列)中的每个元素,计算其代数余子式。这通常涉及到计算一个 ( n − 1 ) (n-1) (n1)阶行列式。

  3. 应用拉普拉斯展开:将选定行(或列)中的每个元素与其对应的代数余子式相乘,并考虑符号( ( − 1 ) ( i + j ) (-1)^{(i+j)} (1)(i+j) ( − 1 ) ( k + j ) (-1)^{(k+j)} (1)(k+j)),然后将这些乘积相加。

  4. 递归或简化:如果得到的 ( n − 1 ) (n-1) (n1)阶行列式仍然很复杂,可以考虑继续应用拉普拉斯展开或寻找其他简化方法(如行交换、倍加行等)。

  5. 计算结果:最终,你将得到一个或多个更简单的行列式的和,这些行列式的阶数比原行列式低。继续这个过程,直到你能够直接计算出所有行列式的值。

注意事项

  • 拉普拉斯展开可以递归地应用,但需要注意不要陷入无限递归。
  • 在实际应用中,通常会选择包含较多零或已知特殊值的行或列进行展开,以简化计算。
  • 对于大型行列式,手动计算可能非常耗时且容易出错。在这种情况下,最好使用计算机程序或数学软件来计算。

示例

考虑一个 3 × 3 3 \times 3 3×3行列式,并选择第一行进行拉普拉斯展开:

D = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ D = \left| \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right| D= a11a21a31a12a22a32a13a23a33

按第一行展开,我们得到:

D = a 11 ∣ a 22 a 23 a 32 a 33 ∣ − a 12 ∣ a 21 a 23 a 31 a 33 ∣ + a 13 ∣ a 21 a 22 a 31 a 32 ∣ D = a_{11} \left| \begin{array}{cc} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array} \right| - a_{12} \left| \begin{array}{cc} a_{21} & a_{23} \\ a_{31} & a_{33} \end{array} \right| + a_{13} \left| \begin{array}{cc} a_{21} & a_{22} \\ a_{31} & a_{32} \end{array} \right| D=a11 a22a32a23a33 a12 a21a31a23a33 +a13 a21a31a22a32

这里,每个 2 × 2 2 \times 2 2×2行列式都是 a 1 j a_{1j} a1j的代数余子式,并且已经乘以了相应的 ( − 1 ) ( 1 + j ) (-1)^{(1+j)} (1)(1+j)

  • 计算n阶行列式

1. 通用方法:拉普拉斯展开

对于任意n阶行列式,我们可以使用拉普拉斯展开(也称为按k行展开定理)来逐步降低行列式的阶数。但这种方法通常比较复杂,且不如特殊结构的行列式计算简便。

2. 特殊结构行列式的计算

a. 对角型行列式 如果行列式是对角型的,即除了主对角线上的元素外,其他元素都为0,那么行列式的值就是主对角线上元素的乘积。

D n = ∣ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ∣ = a 11 a 22 ⋯ a n n D_n = \left| \begin{matrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{matrix} \right| = a_{11}a_{22}\cdots a_{nn} Dn= a11000a22000ann =a11a22ann

b. 上/下三角型行列式 如果行列式是上三角型或下三角型的,其计算方法与对角型行列式类似,只是非零元素可能不仅限于主对角线。但结果仍然是主对角线上元素的乘积(或考虑可能的负号,如果行列式是下三角型且行交换次数为奇数)。

c. 范德蒙德行列式 范德蒙德行列式是一种特殊的行列式,其元素是连续自然数的幂。对于形如

D n = ∣ 1 x 1 x 1 2 ⋯ x 1 n − 1 1 x 2 x 2 2 ⋯ x 2 n − 1 ⋮ ⋮ ⋮ ⋱ ⋮ 1 x n x n 2 ⋯ x n n − 1 ∣ D_n = \left| \begin{matrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{matrix} \right| Dn= 111x1x2xnx12x22xn2x1n1x2n1xnn1

的范德蒙德行列式,其值为

D n = ∏ 1 ≤ i < j ≤ n ( x j − x i ) D_n = \prod_{1 \leq i < j \leq n} (x_j - x_i) Dn=1i<jn(xjxi)

3. 递归方法

对于某些行列式,特别是那些可以通过行或列操作简化为更小阶行列式的,我们可以使用递归方法。这通常涉及到对行列式进行行或列的加法或乘法操作,以消去某些元素,从而得到一个更简单的行列式。

结论

由于题目没有给出具体的行列式形式,上述方法提供了处理n阶行列式的一般思路和几种特殊情况下的具体计算方法。在实际应用中,我们需要根据行列式的具体结构来选择最合适的方法。

  • 范德蒙德行列式
    是一种具有特殊形式的n阶行列式,它在数学和物理的多个领域中有重要应用。范德蒙德行列式的定义如下:

对于给定的n个不同的数 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn,范德蒙德行列式 V ( x 1 , x 2 , … , x n ) V(x_1, x_2, \ldots, x_n) V(x1,x2,,xn)
是一个n阶行列式,其形式为:

V ( x 1 , x 2 , … , x n ) = ∣ 1 x 1 x 1 2 ⋯ x 1 n − 1 1 x 2 x 2 2 ⋯ x 2 n − 1 ⋮ ⋮ ⋮ ⋱ ⋮ 1 x n x n 2 ⋯ x n n − 1 ∣ V(x_1, x_2, \ldots, x_n) = \left| \begin{matrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{matrix} \right| V(x1,x2,,xn)= 111x1x2xnx12x22xn2x1n1x2n1xnn1

范德蒙德行列式的一个重要性质是它的值可以由这些数的差值的乘积给出。具体来说,范德蒙德行列式的值等于:

V ( x 1 , x 2 , … , x n ) = ∏ 1 ≤ i < j ≤ n ( x j − x i ) V(x_1, x_2, \ldots, x_n) = \prod_{1 \leq i < j \leq n} (x_j - x_i) V(x1,x2,,xn)=1i<jn(xjxi)

这里, ∏ \prod 表示连乘,即对所有满足 1 ≤ i < j ≤ n 1 \leq i < j \leq n 1i<jn i i i j j j,取 ( x j − x i ) (x_j - x_i) (xjxi) 的乘积。

证明范德蒙德行列式的值

范德蒙德行列式的值的证明通常通过数学归纳法或拉普拉斯展开来完成。这里我们简要说明一下通过数学归纳法的证明思路:

  1. 基础情况:当 n = 2 n = 2 n=2 时,范德蒙德行列式退化为一个2阶行列式,其值显然为 x 2 − x 1 x_2 - x_1 x2x1,与公式一致。

  2. 归纳假设:假设对于某个 k ≥ 2 k \geq 2 k2,范德蒙德行列式 V ( x 1 , x 2 , … , x k ) V(x_1, x_2, \ldots, x_k) V(x1,x2,,xk) 的值等于 ∏ 1 ≤ i < j ≤ k ( x j − x i ) \prod_{1 \leq i < j \leq k} (x_j - x_i) 1i<jk(xjxi)

  3. 归纳步骤:考虑 n = k + 1 n = k + 1 n=k+1 的情况。我们需要证明 V ( x 1 , x 2 , … , x k , x k + 1 ) V(x_1, x_2, \ldots, x_k, x_{k+1}) V(x1,x2,,xk,xk+1) 的值等于 ∏ 1 ≤ i < j ≤ k + 1 ( x j − x i ) \prod_{1 \leq i < j \leq k+1} (x_j - x_i) 1i<jk+1(xjxi)。这通常通过按最后一行或最后一列展开行列式,并利用归纳假设来完成。

具体来说,可以按最后一行展开行列式,得到一系列的低一阶范德蒙德行列式(通过删除最后一行和某一列得到),然后利用归纳假设计算这些低一阶行列式的值,并将它们相加。经过一系列代数变换后,可以证明这个和等于
∏ 1 ≤ i < j ≤ k + 1 ( x j − x i ) \prod_{1 \leq i < j \leq k+1} (x_j - x_i) 1i<jk+1(xjxi)

由于证明过程相对复杂,这里只给出了证明的大致框架。在实际应用中,我们通常直接引用范德蒙德行列式的值公式,而不需要每次都进行证明。

  • n阶行列式具有一系列重要的性质,这些性质在行列式的计算、证明以及线性代数中的其他应用中起着关键作用。以下是一些基本的n阶行列式性质:
  1. 行列式与它的转置行列式相等 det ⁡ ( A ) = det ⁡ ( A T ) \det(A) = \det(A^T) det(A)=det(AT) 其中, A A A 是n阶矩阵, A T A^T AT A A A 的转置矩阵。

  2. 行列式乘积性质: 如果 A A A B B B 都是n阶矩阵,那么 det ⁡ ( A B ) = det ⁡ ( A ) ⋅ det ⁡ ( B ) \det(AB) = \det(A) \cdot \det(B) det(AB)=det(A)det(B) 注意,这个性质要求 A B AB AB 也是n阶矩阵,即 A A A B B B 必须是方阵且可以相乘。

  3. 行列式的行(列)倍加性质: 如果 A A A 是n阶矩阵,将 A A A 的第 i i i 行(或列)乘以 k k k 后加到第 j j j 行(或列)上,得到的新矩阵 B B B 的行列式满足 det ⁡ ( B ) = det ⁡ ( A ) \det(B) = \det(A) det(B)=det(A)
    这个性质说明行列式在行(列)的线性变换下是不变的。

  4. 行列式的行(列)交换性质: 交换 A A A 的两行(或两列),得到的新矩阵 B B B 的行列式满足 det ⁡ ( B ) = − det ⁡ ( A ) \det(B) = -\det(A) det(B)=det(A) 即,交换行列式的两行(列)会改变行列式的符号。

  5. 行列式的行(列)提取公因子性质: 如果 A A A 的某一行(列)的所有元素都可以提取出一个公因子 k k k,那么 det ⁡ ( A ) = k ⋅ det ⁡ ( A ′ ) \det(A) = k \cdot \det(A') det(A)=kdet(A) 其中 A ′ A' A 是将 A A A 的该行(列)除以 k k k 后得到的矩阵。

  6. 行列式的零行(列)性质: 如果 A A A 的某一行(列)全为零,那么 det ⁡ ( A ) = 0 \det(A) = 0 det(A)=0

  7. 三角行列式的性质对于上(下)三角行列式,其行列式的值等于主对角线上元素的乘积

  8. 范德蒙德行列式的性质(如前面所述): 范德蒙德行列式具有特定的形式,其值由给定的元素及其差值的乘积给出。

  9. 拉普拉斯展开: 行列式可以按任意一行或一列展开为低阶行列式的和。这是计算复杂行列式的一种有效方法。

  10. 代数余子式与余子式的性质
    行列式中某个元素 a i j a_{ij} aij 的代数余子式 A i j A_{ij} Aij 是由删除 A A A 的第 i i i 行和第 j j j 列后得到的 ( n − 1 ) (n-1) (n1) 阶行列式的值,再乘以 ( − 1 ) ( i + j ) (-1)^{(i+j)} (1)(i+j)。行列式可以按某一行(列)的代数余子式展开。

这些性质是行列式理论的基础,它们不仅有助于我们理解和计算行列式,还在线性代数、矩阵论、多项式理论等多个数学分支中发挥着重要作用。

参考文献

1.文心一言
2.《线性代数》第二版
3.ChatGPT

  • 10
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值