优化理论及应用精解【5】

线性变换

概述

线性变换是数学中一个常见的概念,特别是在线性代数中。它描述了一个向量空间到另一个向量空间(可能是同一个空间)的映射,这种映射保持了向量的加法和标量乘法的结构。简单来说,线性变换就是满足线性性质的函数。

定义

V V V W W W 是两个向量空间(可能在不同的域上,但通常是在实数或复数上)。一个函数 T : V → W T: V \rightarrow W T:VW 被称为线性变换,如果对于 V V V 中的任意向量 u \mathbf{u} u v \mathbf{v} v 以及任意标量 c c c,都满足以下两个条件:

  1. 可加性 T ( u + v ) = T ( u ) + T ( v ) T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) T(u+v)=T(u)+T(v)
  2. 齐次性(或数乘性质): T ( c u ) = c T ( u ) T(c\mathbf{u}) = cT(\mathbf{u}) T(cu)=cT(u)

矩阵表示

在有限维空间中,线性变换通常可以通过矩阵来表示。设 V V V 是一个 n n n 维向量空间, W W W 是一个 m m m 维向量空间,并选定这两组空间中的基。那么,任何一个线性变换 T : V → W T: V \rightarrow W T:VW 都可以表示为一个 m × n m \times n m×n 的矩阵 A A A。具体来说,如果 v \mathbf{v} v V V V 中的一个向量,其在选定基下的坐标表示为列向量 x \mathbf{x} x,那么 T ( v ) T(\mathbf{v}) T(v) W W W 的基下的坐标就是 A x A\mathbf{x} Ax

例子

  1. 旋转:在二维空间中,一个旋转角度 θ \theta θ 的线性变换可以通过矩阵

( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} (cosθsinθsinθcosθ)

来表示。

  1. 缩放:在二维空间中,一个沿 x x x 轴缩放 a a a 倍,沿 y y y 轴缩放 b b b 倍的线性变换可以通过矩阵

( a 0 0 b ) \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} (a00b)

来表示。

  1. 投影:从三维空间到二维空间的一个投影,比如投影到 x y xy xy 平面上,可以通过矩阵

( 1 0 0 0 1 0 0 0 0 ) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} 100010000

来表示。

性质

  • 线性变换保持零向量不变,即 T ( 0 ) = 0 T(\mathbf{0}) = \mathbf{0} T(0)=0
  • 线性变换保持向量的线性组合不变,即如果 u \mathbf{u} u v \mathbf{v} v 是向量, c c c d d d 是标量,那么 T ( c u + d v ) = c T ( u ) + d T ( v ) T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v}) T(cu+dv)=cT(u)+dT(v)
  • 线性变换的逆(如果存在)也是线性的。
  • 线性变换的复合(即一个接一个地应用两个线性变换)也是线性的。

详解

线性变换的定义

线性变换(linear transformation)又称为线性映射,是一种在向量空间中进行的特殊的变换。具体来说,设V和W是两个向量空间,如果存在一个映射T: V → W,满足以下两个条件:

  1. 保持加法运算:对于任意向量v1和v2属于V,有T(v1 + v2) = T(v1) + T(v2)。
  2. 保持标量乘法运算:对于任意向量v属于V和任意标量a,有T(av) = aT(v)。

那么,映射T就被称为从V到W的线性变换。特别地,当V和W是同一个向量空间时,T称为V上的线性变换。

线性变换的性质

线性变换具有以下性质:

  1. 零元素变换:线性变换把零元素仍变为零元素,即T(0) = 0。
  2. 负元素变换:线性变换把向量α的负元素-α变换为T(α)的负元素,即T(-α) = -T(α)。
  3. 线性组合与线性关系式不变:线性变换保持线性组合与线性关系式不变。即如果α1, α2, …, αn是线性相关的向量组,那么T(α1), T(α2), …, T(αn)也是线性相关的向量组;反之,如果α1, α2, …, αn是线性无关的向量组,那么T(α1), T(α2), …, T(αn)可能是线性相关的,但也可能保持线性无关。
  4. 秩和零度:对于线性变换T,有值域R(T)和核N(T)的概念。dimR(T)和dimN(T)分别称为T的秩和零度,且dimR(T) + dimN(T) = n(n为线性空间维数)。

线性变换的计算

线性变换可以由矩阵表示。对于一个线性变换T: V → W,可以找到一个矩阵A,使得对于任意向量v属于V,有T(v) = Av。这个矩阵A被称为线性变换的表示矩阵。通过矩阵运算,可以方便地计算线性变换的结果。

线性变换的例子

  1. 恒等变换:在任意向量空间V上,定义变换I: V → V,使得对于V中的任意向量v,都有I(v) = v。则I是V上的恒等变换,也是线性变换。
  2. 零变换:在任意向量空间V上,定义变换O: V → V,使得对于V中的任意向量v,都有O(v) = 0。则O是V上的零变换,也是线性变换。
  3. 数乘变换:在任意向量空间V上,给定一个标量k,定义变换A: V → V,使得对于V中的任意向量v,都有A(v) = kv。则A是V上的数乘变换,也是线性变换。
  4. 求导变换:在多项式空间上,定义变换D: Pn → Pn,使得对于任意多项式f(x),都有D(f(x)) = f’(x)。则D是多项式空间上的线性变换。

线性变换的例题

例1:判断下列变换是否为线性变换。

设变换T: R 2 → R 2 R^2 → R^2 R2R2,定义为T((x, y)) = (x + y, x - y)。

解:

  1. 验证加法性质:对于任意向量(x1, y1)和(x2, y2),

T((x1, y1) + (x2, y2)) = T((x1 + x2, y1 + y2)) = ((x1 + x2) + (y1 + y2), (x1 + x2) - (y1 + y2)) = (x1 + y1 + x2 + y2, x1 - y1 + x2 - y2)

T((x1, y1)) + T((x2, y2)) = (x1 + y1, x1 - y1) + (x2 + y2, x2 - y2) = (x1 + x2 + y1 + y2, x1 - y1 + x2 - y2)

由于两者相等,满足加法性质。

  1. 验证标量乘法性质:对于任意向量(x, y)和标量k,

T(k(x, y)) = T((kx, ky)) = (kx + ky, kx - ky) = k(x + y, x - y) = kT((x, y))

满足标量乘法性质。

因此,T是线性变换。

例2:设A是3x3矩阵,A = 1 2 3 0 1 1 0 0 2 \begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{array} 100210312,求A的值域R(A)和核N(A)。

解:

  1. 求值域R(A):值域R(A)是A的列向量所张成的子空间。通过高斯消元法或观察法,可以找到A的列向量中的主元列,它们张成的空间即为R(A)。

    在本例中,A的列向量分别为(1, 0, 0),(2, 1, 0),(3, 1, 2)。通过高斯消元法或观察法,可以发现这三个列向量线性无关,因此R(A)是整个R^3空间。

  2. 求核N(A):核N(A)是满足Ax = 0的所有向量x的集合。解线性方程组Ax = 0,得到的解集即为N(A)。

    在本例中,解方程组

    1 2 3 0 1 1 0 0 2 x y z = 0 0 0 \begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{array}\begin{array}{c} x \\ y \\ z \end{array}=\begin{array}{c} 0 \\ 0 \\ 0 \end{array} 100210312xyz=000

    得到解为x = -2z, y = -z, z自由。因此,N(A) = {(-2z, -z, z) | z ∈ R}。
    仿射集(Affine Set)是数学和特别是线性代数中的一个重要概念,它与线性空间中的线性变换和仿射变换紧密相关。在深入讨论仿射集的所有定理之前,我们首先需要明确仿射集的基本定义和性质。然而,由于“所有定理”这一表述非常宽泛,我将概述一些仿射集的基本性质和重要定理,这些性质和定理在研究和应用仿射集时非常有用。

仿射集的定义

一个集合 C ⊆ R n C \subseteq \mathbb{R}^n CRn 被称为仿射集,如果对于集合 C C C 中的任意两个点 x 1 x_1 x1 x 2 x_2 x2,以及任意实数 θ \theta θ 0 ≤ θ ≤ 1 0 \leq \theta \leq 1 0θ1),点 θ x 1 + ( 1 − θ ) x 2 \theta x_1 + (1 - \theta) x_2 θx1+(1θ)x2 也属于集合 C C C。这个定义可以扩展到多个点的仿射组合。

基本性质

  1. 空集和单点集:空集 ∅ \emptyset 和任意单点集 { x } \{x\} {x} 都是仿射集。
  2. 直线和线段:在 R n \mathbb{R}^n Rn 中,任意直线或线段都是仿射集。
  3. 仿射子空间:如果 C C C 是一个仿射集,那么它包含的任意子集(如果也是仿射集的话)被称为 C C C 的仿射子空间。
  4. 仿射变换下的不变性:仿射集在仿射变换下保持不变。即,如果 C C C 是一个仿射集, T T T 是一个仿射变换,那么 T ( C ) T(C) T(C) 也是仿射集。

重要定理

  1. 仿射集的闭包性质:仿射集的任意交集仍然是仿射集。特别地,如果 C 1 C_1 C1 C 2 C_2 C2 是仿射集,那么 C 1 ∩ C 2 C_1 \cap C_2 C1C2 也是仿射集。
  2. 仿射集的生成:给定一组点 x 1 , x 2 , … , x k x_1, x_2, \ldots, x_k x1,x2,,xk,它们所有仿射组合的集合形成一个仿射集,称为由这些点生成的仿射集。
  3. 维数定理:一个仿射集的维数等于其生成集中线性无关向量的最大数量减一(对于非空集而言)。空集的维数定义为 − 1 -1 1
  4. 仿射包:对于任意集合 S ⊆ R n S \subseteq \mathbb{R}^n SRn,存在一个最小的仿射集包含 S S S,称为 S S S 的仿射包(Affine Hull)。
  5. 仿射独立性:一组向量 v 1 , v 2 , … , v k v_1, v_2, \ldots, v_k v1,v2,,vk 被称为仿射独立,如果它们中没有一个向量可以表示为其他向量的仿射组合。仿射独立性与线性独立性在概念上是相关的,但有所不同。

应用和扩展

仿射集在凸分析、优化理论、计算机图形学等领域有广泛应用。例如,在凸分析中,凸集是一种特殊的仿射集,它满足对于集合中任意两点的凸组合也属于该集合。在优化问题中,可行域经常是凸集或仿射集,这使得问题的求解更加容易和高效。

总之,仿射集是一个丰富而复杂的主题,涉及多个数学分支和实际应用领域。上述提到的性质和定理只是仿射集理论的一部分,完整的理论还包括更多深入的结果和应用。

参考文献

1.《最优化导论》
2.文心一言,chatgpt

  • 12
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《Qt及Qt Quick开发实战精解》是一本关于Qt开发的实用指南。Qt是一套跨平台的C++图形界面应用程序开发框架,被广泛应用于开发桌面应用、移动应用和嵌入式系统。Qt Quick是Qt框架下的一个模块,它专注于快速开发漂亮、流畅的用户界面。 该书从理论和实践两个方面介绍了Qt和Qt Quick的基本概念和开发技巧。首先,作者讲解了Qt的基础知识,包括Qt的工具链、对象模型、信号与槽机制等。接着,书中详细介绍了Qt Quick的相关内容,包括Qt Quick的语法、界面元素、布局方式等。此外,书中还介绍了Qt和Qt Quick的常用控件、多线程编程、网络通信等高级技术。 这本书通过丰富的实例和案例,让读者能够更好地理解Qt和Qt Quick的开发原理和实践方法。例如,书中提供了一些常见应用场景下的实战案例,如开发一个跨平台的音乐播放器、绘制一个实时曲线图等。通过参考这些案例,读者可以学会如何使用Qt和Qt Quick进行各种应用开发。 此外,书中还对Qt和Qt Quick的性能优化和调试技巧进行了介绍。它提供了一些常见的性能问题和解决方案,帮助开发者优化和调试他们的应用程序。 总的来说,《Qt及Qt Quick开发实战精解》是一本非常实用的开发指南,能够帮助读者快速掌握Qt和Qt Quick的开发技巧,并且能够应用于实际项目中。无论是对于初学者还是有一定经验的开发者来说,这本书都是一本值得推荐的学习资料。 ### 回答2: Qt及Qt Quick开发实战精解是一本与Qt以及Qt Quick相关的开发实践指南。Qt是跨平台的C++应用程序开发框架,而Qt Quick是一种用于创建流畅的用户界面的用户界面技术。 该书的主要内容包括Qt的基础知识、Qt Quick的基础知识以及在实际项目中如何应用Qt和Qt Quick进行开发。首先,书中介绍了Qt的概念、特点和架构,让读者对Qt有一个全面的了解。然后,书中详细讲解了Qt的常用模块和功能,包括图形界面、网络通信、数据库访问和多线程编程等。读者可以通过学习这些内容,了解如何使用Qt进行各种应用程序的开发。 接下来,该书重点介绍了Qt Quick的知识。Qt Quick是Qt的一个模块,用于设计和开发现代化的用户界面。它使用QML语言来描述界面,具有快速、灵活和可扩展的特点。书中详细讲解了QML语言的语法和特性,以及如何使用Qt Quick的各种元素和组件进行界面设计。 最后,书中还提供了一些实际项目的案例和示例代码,供读者参考和学习。这些案例涵盖了各种应用领域,包括桌面应用、移动应用和嵌入式应用等。通过阅读这些案例,读者可以学习如何使用Qt和Qt Quick开发各种实际项目,并且能够从中获取一些实战经验和技巧。 总之,Qt及Qt Quick开发实战精解是一本系统而全面的Qt开发指南,对于想要学习和应用Qt和Qt Quick进行开发的读者来说,是一本非常有价值的书籍。无论是初学者还是有一定经验的开发者,都可以从这本书中获得实用的知识和技巧。 ### 回答3: 《Qt及Qt Quick开发实战精解》是一本介绍Qt开发框架和Qt Quick的实战书籍。Qt是一款跨平台的应用程序开发框架,可以帮助开发者轻松构建和部署高质量的应用程序。Qt Quick是Qt的一部分,是一种用于快速开发现代化用户界面的技术。 这本书以实战为导向,详细介绍了Qt和Qt Quick的各种开发技巧和最佳实践。首先,它介绍了Qt框架的基本概念和原理。读者可以了解到Qt的对象模型、信号与槽机制、事件处理等重要概念,为后续的实践打下坚实的基础。 接下来,书籍还详细介绍了Qt Quick的使用方法。Qt Quick使用QML语言来构建用户界面,可以快速创建现代化和流畅的界面。书籍对于QML语法、组件的使用和定制、动画效果等方面进行了详细的讲解,帮助读者掌握Qt Quick的开发技术。 此外,书籍还通过实际项目案例来演示Qt和Qt Quick的应用场景。读者可以学习如何使用Qt和Qt Quick开发各种类型的应用程序,如图形界面应用、嵌入式应用、移动应用等。通过这些实例,读者将学会如何根据需求选择合适的Qt组件和库,以及如何解决实际开发中的常见问题。 总的来说,《Qt及Qt Quick开发实战精解》是一本实用性很强的书籍,适合初学者和有一定经验的开发者阅读。读者可以通过学习这本书,快速入门Qt和Qt Quick开发,提升自己的开发技能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值