实变函数精解【18】

有限测度

首先,我们来明确“测度”的概念。在数学中,测度是一个将集合映射到非负实数(通常是实数的扩展,包括正无穷)的函数,它满足某些特定的性质,比如非负性、可加性等。有了这个基础,我们可以进一步探讨有限测度和概率测度的具体定义和它们之间的关系。

有限测度

  • 定义:设 X X X是一个集合, μ \mu μ X X X上的一个测度。如果对于 X X X中的任意集合 A A A,都有 μ ( A ) < ∞ \mu(A) < \infty μ(A)<(即测度的值是有限的),则称 μ \mu μ X X X上的有限测度。
  • 特性:有限测度具有测度的所有基本性质,但其值被限制在有限范围内。

概率测度

  • 定义:概率测度是定义在样本空间(或称为概率空间)上的特殊测度。具体来说,设 ( Ω , F ) (\Omega, \mathcal{F}) (Ω,F)是一个可测空间,其中 Ω \Omega Ω是样本点集合, F \mathcal{F} F Ω \Omega Ω的子集构成的 σ \sigma σ-代数。一个概率测度 P P P是满足以下条件的测度:
    • P ( Ω ) = 1 P(\Omega) = 1 P(Ω)=1(即整个样本空间的测度为1,代表概率为1或必然事件);
    • 对于任意 A ∈ F A \in \mathcal{F} AF,有 P ( A ) ≥ 0 P(A) \geq 0 P(A)0(即任何事件的概率都是非负的)。
  • 特性:概率测度除了具有测度的基本性质外,还特别强调了整个样本空间的测度为1,这体现了概率的“归一化”特点。

有限测度与概率测度的关系

  • 概率测度是一种特殊的有限测度:由于概率测度的定义要求了任何事件的概率都是非负的,且整个样本空间的概率为1,因此概率测度的取值范围被限制在 [ 0 , 1 ] [0, 1] [0,1]之间,自然也就是有限的。所以,概率测度可以看作是有限测度在概率论中的具体应用。
  • 并非所有有限测度都是概率测度:有限测度的取值可以是任意非负实数(只要不超过某个有限上界),而概率测度的取值则必须满足归一化条件。因此,有限测度的范围更广,概率测度只是其中的一部分。

σ \sigma σ-有限测度

首先,我们需要明确“ σ \sigma σ有限测度”的概念。在数学中,特别是在测度论中,一个测度空间上的测度如果满足某些特定的性质,就可以被称为 σ \sigma σ有限测度。

定义

( X , A , μ ) (X, \mathcal{A}, \mu) (X,A,μ)是一个测度空间,其中 X X X是集合, A \mathcal{A} A X X X上的 σ \sigma σ-代数(即由 X X X的子集构成的集合,且满足某些特定性质,如可数并、交、补等运算的封闭性), μ \mu μ是从 A \mathcal{A} A到非负实数(包括正无穷)的映射,满足测度的定义(非负性、可加性等)。

如果 X X X可以表示为可数个测度有限的集合的并集,即存在 { A n } n = 1 ∞ ⊆ A \{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A} {An}n=1A,使得 X = ⋃ n = 1 ∞ A n X = \bigcup_{n=1}^{\infty} A_n X=n=1An,且对于每个 n n n,都有 μ ( A n ) < ∞ \mu(A_n) < \infty μ(An)<,则称 μ \mu μ X X X上的 σ \sigma σ有限测度。

解释

  1. 可数性:这里的“ σ \sigma σ”表示可数(countable),因此 σ \sigma σ有限测度意味着我们可以将整个空间 X X X分解为可数个测度有限的子空间。
  2. 有限性:每个 A n A_n An的测度都是有限的,即 μ ( A n ) < ∞ \mu(A_n) < \infty μ(An)<。但这并不意味着整个空间 X X X的测度 μ ( X ) \mu(X) μ(X)也一定是有限的。实际上,在某些情况下, μ ( X ) \mu(X) μ(X)可能是正无穷。
  3. 应用 σ \sigma σ有限测度在积分理论、概率论和实分析等领域都有广泛的应用。例如,在概率论中,许多重要的概率空间(如勒贝格测度空间上的概率测度)都是 σ \sigma σ有限的。

例子

考虑实数集 R \mathbb{R} R上的勒贝格测度 λ \lambda λ。虽然整个实数集的测度 λ ( R ) \lambda(\mathbb{R}) λ(R)是正无穷,但我们可以将 R \mathbb{R} R分解为可数个有限区间的并集,如 [ − n , n ] [-n, n] [n,n](其中 n n n是正整数)。每个区间 [ − n , n ] [-n, n] [n,n]的测度都是有限的(即 2 n 2n 2n),因此勒贝格测度 λ \lambda λ σ \sigma σ有限的。

综上所述, σ \sigma σ有限测度是一种重要的测度类型,它允许我们将整个空间分解为可数个测度有限的子空间,从而在某些情况下简化问题和分析过程。

计数测度

是测度论中的一个基本概念,它是一种特殊的测度,用于计算集合中元素的数量。以下是对计数测度的详细解释:

定义

X X X是一个集合,对于 X X X的任意子集 A A A,定义计数测度 μ \mu μ为:

μ ( A ) = { ∣ A ∣ , 如果  A  是有限集 ∞ , 如果  A  是无限集 \mu(A) = \begin{cases} |A|, & \text{如果 } A \text{ 是有限集} \\ \infty, & \text{如果 } A \text{ 是无限集} \end{cases} μ(A)={A,,如果 A 是有限集如果 A 是无限集

其中, ∣ A ∣ |A| A表示集合 A A A中元素的数量(即集合的基数)。

性质

  1. 非负性:对于任意集合 A ⊆ X A \subseteq X AX,都有 μ ( A ) ≥ 0 \mu(A) \geq 0 μ(A)0(因为集合中元素的数量总是非负的,或者为无穷大)。

  2. 可加性(有限可加性):如果 { A n } n = 1 N \{A_n\}_{n=1}^{N} {An}n=1N X X X中有限个两两不交的集合,那么

μ ( ⋃ n = 1 N A n ) = ∑ n = 1 N μ ( A n ) \mu\left(\bigcup_{n=1}^{N} A_n\right) = \sum_{n=1}^{N} \mu(A_n) μ(n=1NAn)=n=1Nμ(An)

即有限个不相交集合的并集的测度等于这些集合测度之和。但需要注意的是,计数测度在无限可加性上并不成立,因为无限个集合的并集可能是无限集,而其测度和可能并不等于各个集合测度之和(特别是当这些集合的测度都是正无穷时)。

  1. 单调性:如果 A ⊆ B ⊆ X A \subseteq B \subseteq X ABX,那么 μ ( A ) ≤ μ ( B ) \mu(A) \leq \mu(B) μ(A)μ(B)。即子集的测度不大于其母集的测度。

  2. 空集测度 μ ( ∅ ) = 0 \mu(\emptyset) = 0 μ()=0,即空集的测度为0。

应用

计数测度在离散数学、概率论和统计学等领域有广泛应用。例如,在概率论中,对于有限样本空间,我们可以使用计数测度来计算事件的概率(即事件包含的样本点数与总样本点数的比值)。在统计学中,计数测度可以用于计算数据集中某个特定值的出现次数。

注意

虽然计数测度在定义上允许无限集的测度为无穷大,但在实际应用中,我们通常更关注有限集或可数集上的计数测度。对于不可数集,计数测度通常不是很有用,因为我们无法直接计算其元素的数量。在这种情况下,我们可能需要使用其他类型的测度(如勒贝格测度)来描述集合的“大小”或“体积”。

完备概率测度

是概率论中的一个重要概念,它是对概率测度的一种加强,以确保某些良好的性质得以成立。以下是对完备概率测度的详细解释:

定义

( Ω , F , P ) (\Omega, \mathcal{F}, P) (Ω,F,P)是一个概率空间,其中 Ω \Omega Ω是样本空间, F \mathcal{F} F Ω \Omega Ω上的 σ \sigma σ-代数(即由 Ω \Omega Ω的子集构成的集合,满足可数并、交、补等运算的封闭性), P P P是从 F \mathcal{F} F [ 0 , 1 ] [0,1] [0,1]的映射,满足概率测度的定义(非负性、可加性、整个样本空间的测度为1)。

如果对于任意 A ∈ F A \in \mathcal{F} AF,当 P ( A ) = 0 P(A) = 0 P(A)=0时,对于任意 B ⊆ A B \subseteq A BA B ∈ F B \in \mathcal{F} BF(即 B B B A A A F \mathcal{F} F-可测子集),都有 P ( B ) = 0 P(B) = 0 P(B)=0,则称概率测度 P P P是完备的。

解释

  1. 零测集:在概率论中,一个测度为0的集合被称为零测集或零概率事件。完备性要求,如果一个集合是零测集,那么它的所有可测子集也必须是零测集。

  2. 加强性质:完备性是对概率测度的一种加强。在某些情况下,不完备的概率测度可能导致一些不期望的结果,比如某些集合的测度无法唯一确定。通过要求完备性,我们可以避免这些问题。

  3. 构造完备测度:对于不完备的概率测度,我们可以通过扩展其定义域(即增大 σ \sigma σ-代数 F \mathcal{F} F)来构造一个完备的概率测度。这通常涉及到添加所有零测集的子集到 F \mathcal{F} F中。

  4. 应用:完备概率测度在概率论和随机过程中有广泛应用。例如,在构建随机过程(如布朗运动)时,通常需要在一个完备的概率空间中进行,以确保某些良好的性质(如马尔科夫性)得以成立。

例子

考虑实数集 R \mathbb{R} R上的勒贝格测度 λ \lambda λ,并限制在区间 [ 0 , 1 ] [0,1] [0,1]上。我们可以定义一个概率测度 P P P为:

P ( A ) = λ ( A ∩ [ 0 , 1 ] ) λ ( [ 0 , 1 ] ) = λ ( A ∩ [ 0 , 1 ] ) P(A) = \frac{\lambda(A \cap [0,1])}{\lambda([0,1])} = \lambda(A \cap [0,1]) P(A)=λ([0,1])λ(A[0,1])=λ(A[0,1])

对于任意 A ⊆ R A \subseteq \mathbb{R} AR。然而,这个概率测度在 [ 0 , 1 ] [0,1] [0,1]上的勒贝格不可测集(如康托尔集)上是不完备的。为了得到一个完备的概率测度,我们需要扩展 σ \sigma σ-代数以包含所有勒贝格可测集以及它们的零测子集。

综上所述,完备概率测度是概率论中的一个重要概念,它确保了概率测度的某些良好性质得以成立,并在许多应用领域(如随机过程)中发挥着关键作用。

测度空间的其它命题

基础

  • 设 A 是 X 上的一个 σ 代数,若 A n ∈ A ( n = 1 , 2 , . . . ) , 则 ∩ A n ∈ A ,若 A , B ∈ A ,则 A \ B ∈ A 设\mathscr{A}是X上的一个\sigma代数,若A_n\in \mathscr{A}(n=1,2,...), \\则\cap A_n \in \mathscr{A} ,若A,B \in \mathscr{A},则A\backslash B \in\mathscr{A} AX上的一个σ代数,若AnA(n=1,2,...)AnA,若A,BA,则A\BA

测度空间性质

测度空间是数学中的一个基本概念,特别是在实分析和概率论中。一个测度空间是一个三元组 ( X , Σ , μ ) (X, \Sigma, \mu) (X,Σ,μ),其中:

  1. X X X 是一个集合,称为样本空间或底层空间。

  2. Σ \Sigma Σ X X X 的一些子集的集合,称为 σ \sigma σ-代数或可测集合的集合。它必须满足以下条件:

    • 空集 ∅ \emptyset 属于 Σ \Sigma Σ
    • 如果 A A A 属于 Σ \Sigma Σ,那么 A A A 的补集 X ∖ A X \setminus A XA 也属于 Σ \Sigma Σ
    • 如果 A 1 , A 2 , … A_1, A_2, \ldots A1,A2, Σ \Sigma Σ 中的可数多个集合,那么它们的并集 ⋃ i = 1 ∞ A i \bigcup_{i=1}^{\infty} A_i i=1Ai 也属于 Σ \Sigma Σ
  3. μ \mu μ 是一个从 Σ \Sigma Σ [ 0 , + ∞ ] [0, +\infty] [0,+] 的函数,称为测度,它必须满足以下条件:

    • μ ( ∅ ) = 0 \mu(\emptyset) = 0 μ()=0
    • 如果 A 1 , A 2 , … A_1, A_2, \ldots A1,A2, Σ \Sigma Σ 中的可数多个两两不交的集合,那么 μ ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ μ ( A i ) \mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i) μ(i=1Ai)=i=1μ(Ai)(这是可数可加性)。

测度空间的一些重要性质包括:

完备性

如果 μ \mu μ 是完备的,那么对于任何 A ∈ Σ A \in \Sigma AΣ μ ( A ) = 0 \mu(A) = 0 μ(A)=0,以及任何 B ⊆ A B \subseteq A BA,都有 B ∈ Σ B \in \Sigma BΣ μ ( B ) = 0 \mu(B) = 0 μ(B)=0

可分性

测度空间 ( X , Σ , μ ) (X, \Sigma, \mu) (X,Σ,μ) 是可分的,如果存在一个可数集 C ⊆ X C \subseteq X CX,使得对于任何 A ∈ Σ A \in \Sigma AΣ μ ( A ) > 0 \mu(A) > 0 μ(A)>0,都有 A ∩ C ≠ ∅ A \cap C \neq \emptyset AC=

正则性

测度 μ \mu μ 是正则的,如果对于任何 A ∈ Σ A \in \Sigma AΣ ϵ > 0 \epsilon > 0 ϵ>0,都存在一个紧集 K ⊆ A K \subseteq A KA 和一个开集 U ⊇ A U \supseteq A UA,使得 μ ( U ∖ K ) < ϵ \mu(U \setminus K) < \epsilon μ(UK)<ϵ

外测度与内测度

对于 X X X 的任意子集 A A A,可以定义外测度 μ ∗ ( A ) \mu^*(A) μ(A) inf ⁡ { μ ( U ) : U ⊇ A , U ∈ Σ } \inf\{\mu(U): U \supseteq A, U \in \Sigma\} inf{μ(U):UA,UΣ},其中 inf ⁡ \inf inf 表示下确界。内测度则定义为 μ ∗ ( A ) = sup ⁡ { μ ( K ) : K ⊆ A , K  是紧集 } \mu_*(A) = \sup\{\mu(K): K \subseteq A, K \text{ 是紧集}\} μ(A)=sup{μ(K):KA,K 是紧集},其中 sup ⁡ \sup sup 表示上确界。当 A A A 是可测集时,外测度与内测度相等,并且都等于 μ ( A ) \mu(A) μ(A)

勒贝格测度与勒贝格空间

R n \mathbb{R}^n Rn 上,勒贝格测度是一种特别重要的测度。勒贝格测度是正则的、完备的,并且对于任何勒贝格可测集 A A A,都有 μ ( A ) = inf ⁡ { ∑ i = 1 ∞ vol ( B i ) : B i  是开盒,  A ⊆ ⋃ i = 1 ∞ B i } \mu(A) = \inf\{\sum_{i=1}^{\infty} \text{vol}(B_i): B_i \text{ 是开盒, } A \subseteq \bigcup_{i=1}^{\infty} B_i\} μ(A)=inf{i=1vol(Bi):Bi 是开盒Ai=1Bi},其中 vol ( B i ) \text{vol}(B_i) vol(Bi) 表示 B i B_i Bi 的体积。

测度的扩张、完备测度以及完备扩张

测度空间 μ \mu μ 的扩张

测度的扩张是指将一个测度从一个较小的 σ \sigma σ-代数扩张到一个较大的 σ \sigma σ-代数上。具体来说,设 ( X , Σ , μ ) (X, \Sigma, \mu) (X,Σ,μ) 是一个测度空间, Σ ′ \Sigma' Σ Σ \Sigma Σ 的一个超集(即 Σ ⊆ Σ ′ \Sigma \subseteq \Sigma' ΣΣ),且 Σ ′ \Sigma' Σ 也是 X X X 上的一个 σ \sigma σ-代数。如果存在一个测度 μ ′ \mu' μ Σ ′ \Sigma' Σ 上,使得对于所有 A ∈ Σ A \in \Sigma AΣ,都有 μ ′ ( A ) = μ ( A ) \mu'(A) = \mu(A) μ(A)=μ(A),则称 μ ′ \mu' μ μ \mu μ 的一个扩张。

完备测度

完备测度是指一个测度空间中的任何零测集(即测度为0的集合)的子集也是可测的,并且测度为0。具体来说,设 ( X , Σ , μ ) (X, \Sigma, \mu) (X,Σ,μ) 是一个测度空间,如果对于任何 A ∈ Σ A \in \Sigma AΣ μ ( A ) = 0 \mu(A) = 0 μ(A)=0,以及任何 B ⊆ A B \subseteq A BA,都有 B ∈ Σ B \in \Sigma BΣ μ ( B ) = 0 \mu(B) = 0 μ(B)=0,则称 μ \mu μ 是完备的。

完备扩张

完备扩张是指将一个测度扩张到一个完备的测度空间上。具体来说,设 ( X , Σ , μ ) (X, \Sigma, \mu) (X,Σ,μ) 是一个测度空间, Σ ′ \Sigma' Σ Σ \Sigma Σ 的一个超集,且 Σ ′ \Sigma' Σ 也是 X X X 上的一个 σ \sigma σ-代数。如果存在一个完备测度 μ ′ \mu' μ Σ ′ \Sigma' Σ 上,使得 μ ′ \mu' μ μ \mu μ 的一个扩张(即对于所有 A ∈ Σ A \in \Sigma AΣ,都有 μ ′ ( A ) = μ ( A ) \mu'(A) = \mu(A) μ(A)=μ(A)),则称 μ ′ \mu' μ μ \mu μ 的一个完备扩张。

值得注意的是,对于任何测度空间 ( X , Σ , μ ) (X, \Sigma, \mu) (X,Σ,μ),总可以构造出一个完备扩张。这通常是通过考虑所有与 Σ \Sigma Σ 中的集合相差一个零测集的集合来完成的,这些集合构成了一个新的 σ \sigma σ-代数 Σ ′ \Sigma' Σ,然后在这个新的 σ \sigma σ-代数上定义一个测度 μ ′ \mu' μ,使得 μ ′ \mu' μ μ \mu μ 的完备扩张。

在实际应用中,完备扩张是非常重要的,因为它允许我们在一个更“完整”的测度空间上工作,其中所有的零测集及其子集都是可测的。这有助于简化许多测度和积分相关的证明和计算。

参考文献

1.文心一言
2.《实变函数》

  • 33
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值