优化理论及应用精解【4】

内积与范数

实数绝对值

绝对值是实数的一个重要属性,它表示一个数到0的距离。以下是关于实数绝对值的一些基本计算、性质、相关定理和公式的总结。

一、绝对值的定义

对于任意实数 x x x,其绝对值 ∣ x ∣ |x| x定义为:

∣ x ∣ = { x , x ≥ 0 − x , x < 0 |x| =\begin{cases}x, x \geq 0 \\ -x, x < 0\end{cases} x={x,x0x,x<0

二、绝对值的基本性质

  1. 非负性:对于任意实数 x x x,都有 ∣ x ∣ ≥ 0 |x| \geq 0 x0
  2. 正数的绝对值:如果 x > 0 x > 0 x>0,则 ∣ x ∣ = x |x| = x x=x
  3. 负数的绝对值:如果 x < 0 x < 0 x<0,则 ∣ x ∣ = − x |x| = -x x=x
  4. 零的绝对值 ∣ 0 ∣ = 0 |0| = 0 ∣0∣=0
  5. 乘法性质:对于任意实数 x x x y y y,有 ∣ x y ∣ = ∣ x ∣ ∣ y ∣ |xy| = |x||y| xy=x∣∣y
  6. 除法性质 y ≠ 0 y \neq 0 y=0): ∣ x y ∣ = ∣ x ∣ ∣ y ∣ |\frac{x}{y}| = \frac{|x|}{|y|} yx=yx
  7. 三角不等式(或称为绝对值的加和性质):对于任意实数 x x x y y y,有 ∣ x + y ∣ ≤ ∣ x ∣ + ∣ y ∣ |x + y| \leq |x| + |y| x+yx+y
  8. 绝对值的幂:对于任意实数 x x x和正整数 n n n,有 ∣ x n ∣ = ∣ x ∣ n |x^n| = |x|^n xn=xn

三、相关定理和公式

  1. 绝对值的平方:对于任意实数 x x x,有 ∣ x ∣ 2 = x 2 |x|^2 = x^2 x2=x2
  2. 绝对值与距离:绝对值可以用来表示数轴上两点间的距离。例如,数轴上点 a a a和点 b b b之间的距离可以表示为 ∣ a − b ∣ |a - b| ab
  3. 绝对值函数的连续性:绝对值函数是连续的,即当 x x x趋近于某个值时, ∣ x ∣ |x| x也趋近于该值的绝对值。
  4. 绝对值与不等式:在解决不等式问题时,绝对值往往能发挥重要作用。例如,解不等式 ∣ x − a ∣ < b |x - a| < b xa<b b > 0 b > 0 b>0)可以得到 a − b < x < a + b a - b < x < a + b ab<x<a+b
  5. 绝对值与分段函数:绝对值函数可以看作是一种特殊的分段函数,这种性质使得它在处理某些问题时具有独特的优势。
  6. − ∣ a ∣ ≤ a ≤ ∣ a ∣ -|a|\le a\le |a| aaa
  7. ∣ ∣ a ∣ − ∣ b ∣ ≤ ∣ a − b ∣ ≤ ∣ a ∣ + ∣ b ∣ ||a|-|b|\le |a-b| \le |a|+|b| ∣∣ababa+b
  8. ∣ a ∣ ≤ c , ∣ b ∣ ≤ d = > ∣ a + b ∣ ≤ c + d |a|\le c,|b| \le d=>|a+b|\le c+d ac,bd=>a+bc+d
  9. ∣ a ∣ < b = > − b < a < b |a| <b=>-b <a <b a<b=>b<a<b

四、计算示例

  1. 基本计算

    • ∣ 3 ∣ = 3 |3| = 3 ∣3∣=3
    • ∣ − 5 ∣ = 5 |-5| = 5 5∣=5
    • ∣ 0 ∣ = 0 |0| = 0 ∣0∣=0
    • ∣ 3.14 ∣ = 3.14 |3.14| = 3.14 ∣3.14∣=3.14
    • ∣ − 3.14 ∣ = 3.14 |-3.14| = 3.14 3.14∣=3.14
  2. 复杂表达式

    • ∣ x − 2 ∣ + ∣ x + 2 ∣ |x - 2| + |x + 2| x2∣+x+2∣:这个表达式可以根据 x x x的取值范围进行分段讨论。
      • x ≤ − 2 x \leq -2 x2时, ∣ x − 2 ∣ + ∣ x + 2 ∣ = − ( x − 2 ) − ( x + 2 ) = − 2 x |x - 2| + |x + 2| = -(x - 2) - (x + 2) = -2x x2∣+x+2∣=(x2)(x+2)=2x
      • − 2 < x < 2 -2 < x < 2 2<x<2时, ∣ x − 2 ∣ + ∣ x + 2 ∣ = − ( x − 2 ) + ( x + 2 ) = 4 |x - 2| + |x + 2| = -(x - 2) + (x + 2) = 4 x2∣+x+2∣=(x2)+(x+2)=4
      • x ≥ 2 x \geq 2 x2时, ∣ x − 2 ∣ + ∣ x + 2 ∣ = ( x − 2 ) + ( x + 2 ) = 2 x |x - 2| + |x + 2| = (x - 2) + (x + 2) = 2x x2∣+x+2∣=(x2)+(x+2)=2x
  3. 解不等式

    • 解不等式 ∣ x − 1 ∣ ≤ 3 |x - 1| \leq 3 x1∣3
      • 转化为 − 3 ≤ x − 1 ≤ 3 -3 \leq x - 1 \leq 3 3x13
      • 解得 − 2 ≤ x ≤ 4 -2 \leq x \leq 4 2x4

通过以上总结,我们可以更全面地理解实数的绝对值及其相关性质、定理和公式。在实际应用中,这些知识点能够帮助我们更好地解决问题。

欧式内积

欧式内积(Euclidean inner product),也称为点积(dot product),是向量空间中最常用的内积之一,特别是在二维和三维空间中。以下是欧式内积的计算方法、性质、相关定理和公式。

一、欧式内积的计算

对于两个n维向量 a = ( a 1 , a 2 , … , a n ) \mathbf{a} = (a_1, a_2, \ldots, a_n) a=(a1,a2,,an) b = ( b 1 , b 2 , … , b n ) \mathbf{b} = (b_1, b_2, \ldots, b_n) b=(b1,b2,,bn),它们的欧式内积定义为:

< a , b > = a ⋅ b = ∑ i = 1 n a i b i = a 1 b 1 + a 2 b 2 + ⋯ + a n b n = a T b <a,b>=\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n=a^Tb <a,b>=ab=i=1naibi=a1b1+a2b2++anbn=aTb

二、欧式内积的性质

欧式内积,通常也被称为点积或标量积,是线性代数和几何学中的一个基本概念。在 R n \mathbb{R}^n Rn(n维实数空间)中,两个向量 a = ( a 1 , a 2 , … , a n ) \mathbf{a} = (a_1, a_2, \ldots, a_n) a=(a1,a2,,an) b = ( b 1 , b 2 , … , b n ) \mathbf{b} = (b_1, b_2, \ldots, b_n) b=(b1,b2,,bn)的欧式内积定义为:

a ⋅ b = ∑ i = 1 n a i b i = a 1 b 1 + a 2 b 2 + ⋯ + a n b n \mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n ab=i=1naibi=a1b1+a2b2++anbn

欧式内积具有以下几个重要性质:

  1. 交换律
    a ⋅ b = b ⋅ a \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} ab=ba
    即内积的运算顺序不影响结果。

  2. 分配律
    a ⋅ ( b + c ) = a ⋅ b + a ⋅ c \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} a(b+c)=ab+ac
    即内积对加法有分配性。
    欧式内积的可加性是其重要性质之一,它指的是内积运算对于向量加法的分配律。具体来说,对于任意三个向量 a \mathbf{a} a b \mathbf{b} b c \mathbf{c} c,在欧式空间 R n \mathbb{R}^n Rn中,它们的内积满足以下关系:

a ⋅ ( b + c ) = a ⋅ b + a ⋅ c \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} a(b+c)=ab+ac

这个性质可以通过欧式内积的定义直接证明。设 a = ( a 1 , a 2 , … , a n ) \mathbf{a} = (a_1, a_2, \ldots, a_n) a=(a1,a2,,an) b = ( b 1 , b 2 , … , b n ) \mathbf{b} = (b_1, b_2, \ldots, b_n) b=(b1,b2,,bn) c = ( c 1 , c 2 , … , c n ) \mathbf{c} = (c_1, c_2, \ldots, c_n) c=(c1,c2,,cn),则

a ⋅ ( b + c ) = ∑ i = 1 n a i ( b i + c i ) \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \sum_{i=1}^{n} a_i (b_i + c_i) a(b+c)=i=1nai(bi+ci)

由于实数的加法和乘法满足分配律,我们可以将上式拆分为两部分:

= ∑ i = 1 n a i b i + ∑ i = 1 n a i c i = \sum_{i=1}^{n} a_i b_i + \sum_{i=1}^{n} a_i c_i =i=1naibi+i=1naici

这正好等于 a ⋅ b + a ⋅ c \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} ab+ac

欧式内积的可加性使得我们可以方便地对向量进行线性组合,并计算这些组合的内积,而不需要先计算组合后的向量本身。这在许多数学和物理应用中都是非常有用的,比如计算力系的总功、电磁场的总能量等。

  1. 齐次性(数乘性质)
    k ( a ⋅ b ) = ( k a ) ⋅ b = a ⋅ ( k b ) k(\mathbf{a} \cdot \mathbf{b}) = (k\mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (k\mathbf{b}) k(ab)=(ka)b=a(kb)
    其中 k k k是任意实数。即内积对数乘有齐次性。

  2. 非负性
    a ⋅ a ≥ 0 \mathbf{a} \cdot \mathbf{a} \geq 0 aa0
    即任意向量与自身的内积总是非负的。特别地,当且仅当 a = 0 \mathbf{a} = \mathbf{0} a=0(零向量)时, a ⋅ a = 0 \mathbf{a} \cdot \mathbf{a} = 0 aa=0

  3. 正交性
    如果 a ⋅ b = 0 \mathbf{a} \cdot \mathbf{b} = 0 ab=0,则称向量 a \mathbf{a} a b \mathbf{b} b是正交的。这意味着两个向量在几何上是垂直的。

  4. 几何意义
    在几何上,两个向量的内积等于其中一个向量的模与另一个向量在这个向量上的投影的乘积。这提供了内积在几何直观上的解释。

欧式内积的这些性质使得它在许多数学和物理应用中都非常有用。例如,在力学中,力向量和位移向量的内积等于功;在电磁学中,电场向量和电流密度向量的内积与功率密度相关。此外,内积还是定义向量空间中的角度、距离和正交性等概念的基础。

三、相关定理和公式

  1. 柯西-施瓦茨不等式(Cauchy-Schwarz Inequality):
    对于任意两个向量 a \mathbf{a} a b \mathbf{b} b,有
    ∣ a ⋅ b ∣ ≤ ∣ ∣ a ∣ ∣ ⋅ ∣ ∣ b ∣ ∣ |\mathbf{a} \cdot \mathbf{b}| \leq ||\mathbf{a}|| \cdot ||\mathbf{b}|| ab∣∣a∣∣∣∣b∣∣
    其中 ∣ ∣ a ∣ ∣ = a ⋅ a ||\mathbf{a}|| = \sqrt{\mathbf{a} \cdot \mathbf{a}} ∣∣a∣∣=aa 是向量 a \mathbf{a} a的模长。

  2. 向量的夹角
    两个非零向量 a \mathbf{a} a b \mathbf{b} b的夹角 θ \theta θ可以通过它们的内积和模长来计算:
    cos ⁡ θ = a ⋅ b ∣ ∣ a ∣ ∣ ⋅ ∣ ∣ b ∣ ∣ \cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \cdot ||\mathbf{b}||} cosθ=∣∣a∣∣∣∣b∣∣ab

  3. 投影
    向量 a \mathbf{a} a在向量 b \mathbf{b} b上的投影长度为
    a ⋅ b ∣ ∣ b ∣ ∣ \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{b}||} ∣∣b∣∣ab

  4. 格拉姆-施密特正交化(Gram-Schmidt Process):
    这是一个将一组线性无关的向量正交化的过程,用于构造正交基或正交规范基。

  5. 矩阵表示
    如果 A \mathbf{A} A是一个 m × n m \times n m×n的矩阵, x \mathbf{x} x是一个 n × 1 n \times 1 n×1的列向量, y \mathbf{y} y是一个 m × 1 m \times 1 m×1的列向量,则矩阵 A \mathbf{A} A和向量 x \mathbf{x} x y \mathbf{y} y的内积(如果定义合理)可以表示为:
    x T A T y \mathbf{x}^T \mathbf{A}^T \mathbf{y} xTATy
    其中 x T \mathbf{x}^T xT A T \mathbf{A}^T AT分别表示 x \mathbf{x} x A \mathbf{A} A的转置。但在大多数情况下,我们直接处理向量之间的内积,而不是通过矩阵来表示。

四、柯西-施瓦茨不等式

柯西-施瓦茨(Cauchy-Schwarz)不等式是数学中的一个重要不等式,它给出了两个向量内积的绝对值与它们模(长度)乘积之间的关系。以下是柯西-施瓦茨不等式的定义、应用、例子和例题。

定义

对于任意两个向量 a \mathbf{a} a b \mathbf{b} b在欧式空间 R n \mathbb{R}^n Rn中,柯西-施瓦茨不等式表述为:

∣ a ⋅ b ∣ ≤ ∣ ∣ a ∣ ∣ ⋅ ∣ ∣ b ∣ ∣ |\mathbf{a} \cdot \mathbf{b}| \leq ||\mathbf{a}|| \cdot ||\mathbf{b}|| ab∣∣a∣∣∣∣b∣∣

其中, a ⋅ b \mathbf{a} \cdot \mathbf{b} ab表示向量 a \mathbf{a} a b \mathbf{b} b的内积, ∣ ∣ a ∣ ∣ ||\mathbf{a}|| ∣∣a∣∣ ∣ ∣ b ∣ ∣ ||\mathbf{b}|| ∣∣b∣∣分别表示向量 a \mathbf{a} a b \mathbf{b} b的模(即长度),定义为 ∣ ∣ a ∣ ∣ = a ⋅ a ||\mathbf{a}|| = \sqrt{\mathbf{a} \cdot \mathbf{a}} ∣∣a∣∣=aa ∣ ∣ b ∣ ∣ = b ⋅ b ||\mathbf{b}|| = \sqrt{\mathbf{b} \cdot \mathbf{b}} ∣∣b∣∣=bb

当对于某个 α ∈ R \alpha\in R αR a = α b a=\alpha b a=αb时,该不等式的等号成立。

应用

柯西-施瓦茨不等式在许多数学和物理领域都有广泛应用,包括:

  1. 证明其他不等式:柯西-施瓦茨不等式可以作为证明其他不等式的基础。
  2. 估计误差:在数值分析和逼近理论中,柯西-施瓦茨不等式可以用于估计逼近的误差。
  3. 优化问题:在优化问题中,柯西-施瓦茨不等式可以用于推导最优解的条件。
  4. 物理应用:在物理学中,柯西-施瓦茨不等式可以用于推导物理量的界限,如能量、动量等。
例子

考虑两个二维向量 a = ( 1 , 2 ) \mathbf{a} = (1, 2) a=(1,2) b = ( 3 , 4 ) \mathbf{b} = (3, 4) b=(3,4)。计算它们的内积和模:

a ⋅ b = 1 × 3 + 2 × 4 = 11 \mathbf{a} \cdot \mathbf{b} = 1 \times 3 + 2 \times 4 = 11 ab=1×3+2×4=11

∣ ∣ a ∣ ∣ = 1 2 + 2 2 = 5 ||\mathbf{a}|| = \sqrt{1^2 + 2^2} = \sqrt{5} ∣∣a∣∣=12+22 =5

∣ ∣ b ∣ ∣ = 3 2 + 4 2 = 5 ||\mathbf{b}|| = \sqrt{3^2 + 4^2} = 5 ∣∣b∣∣=32+42 =5

然后应用柯西-施瓦茨不等式:

∣ a ⋅ b ∣ = 11 ≤ ∣ ∣ a ∣ ∣ ⋅ ∣ ∣ b ∣ ∣ = 5 × 5 = 5 5 |\mathbf{a} \cdot \mathbf{b}| = 11 \leq ||\mathbf{a}|| \cdot ||\mathbf{b}|| = \sqrt{5} \times 5 = 5\sqrt{5} ab=11∣∣a∣∣∣∣b∣∣=5 ×5=55

在这个例子中,柯西-施瓦茨不等式是成立的,因为 11 ≤ 5 5 11 \leq 5\sqrt{5} 1155 (实际上, 11 < 5 5 ≈ 11.18 11 < 5\sqrt{5} \approx 11.18 11<55 11.18)。

例题

例题1:证明对于任意实数 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn y 1 , y 2 , … , y n y_1, y_2, \ldots, y_n y1,y2,,yn,都有

( ∑ i = 1 n x i y i ) 2 ≤ ( ∑ i = 1 n x i 2 ) ( ∑ i = 1 n y i 2 ) \left( \sum_{i=1}^{n} x_i y_i \right)^2 \leq \left( \sum_{i=1}^{n} x_i^2 \right) \left( \sum_{i=1}^{n} y_i^2 \right) (i=1nxiyi)2(i=1nxi2)(i=1nyi2)

证明:设 x = ( x 1 , x 2 , … , x n ) \mathbf{x} = (x_1, x_2, \ldots, x_n) x=(x1,x2,,xn) y = ( y 1 , y 2 , … , y n ) \mathbf{y} = (y_1, y_2, \ldots, y_n) y=(y1,y2,,yn),则根据柯西-施瓦茨不等式,有

∣ x ⋅ y ∣ ≤ ∣ ∣ x ∣ ∣ ⋅ ∣ ∣ y ∣ ∣ |\mathbf{x} \cdot \mathbf{y}| \leq ||\mathbf{x}|| \cdot ||\mathbf{y}|| xy∣∣x∣∣∣∣y∣∣

∣ ∑ i = 1 n x i y i ∣ ≤ ∑ i = 1 n x i 2 ∑ i = 1 n y i 2 \left| \sum_{i=1}^{n} x_i y_i \right| \leq \sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2} i=1nxiyii=1nxi2 i=1nyi2

两边平方,得到

( ∑ i = 1 n x i y i ) 2 ≤ ( ∑ i = 1 n x i 2 ) ( ∑ i = 1 n y i 2 ) \left( \sum_{i=1}^{n} x_i y_i \right)^2 \leq \left( \sum_{i=1}^{n} x_i^2 \right) \left( \sum_{i=1}^{n} y_i^2 \right) (i=1nxiyi)2(i=1nxi2)(i=1nyi2)

例题2:设 f ( x ) f(x) f(x) g ( x ) g(x) g(x)是区间 [ a , b ] [a, b] [a,b]上的连续实函数,证明

( ∫ a b f ( x ) g ( x )   d x ) 2 ≤ ( ∫ a b f ( x ) 2   d x ) ( ∫ a b g ( x ) 2   d x ) \left( \int_{a}^{b} f(x)g(x) \, dx \right)^2 \leq \left( \int_{a}^{b} f(x)^2 \, dx \right) \left( \int_{a}^{b} g(x)^2 \, dx \right) (abf(x)g(x)dx)2(abf(x)2dx)(abg(x)2dx)

证明:设向量 f = ( f ( x 1 ) , f ( x 2 ) , … , f ( x n ) ) \mathbf{f} = (f(x_1), f(x_2), \ldots, f(x_n)) f=(f(x1),f(x2),,f(xn)) g = ( g ( x 1 ) , g ( x 2 ) , … , g ( x n ) ) \mathbf{g} = (g(x_1), g(x_2), \ldots, g(x_n)) g=(g(x1),g(x2),,g(xn)),其中 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn是区间 [ a , b ] [a, b] [a,b]上的分割点(可以取为等距分割或任意分割)。当分割足够细密时,这些向量可以近似表示函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)在区间 [ a , b ] [a, b] [a,b]上的值。

根据柯西-施瓦茨不等式(在离散形式下),有

( ∑ i = 1 n f ( x i ) g ( x i ) Δ x i ) 2 ≤ ( ∑ i = 1 n f ( x i ) 2 Δ x i ) ( ∑ i = 1 n g ( x i ) 2 Δ x i ) \left( \sum_{i=1}^{n} f(x_i)g(x_i) \Delta x_i \right)^2 \leq \left( \sum_{i=1}^{n} f(x_i)^2 \Delta x_i \right) \left( \sum_{i=1}^{n} g(x_i)^2 \Delta x_i \right) (i=1nf(xi)g(xi)Δxi)2(i=1nf(xi)2Δxi)(i=1ng(xi)2Δxi)

其中 Δ x i = x i + 1 − x i \Delta x_i = x_{i+1} - x_i Δxi=xi+1xi是分割区间的宽度。当分割点无限增多且 Δ x i → 0 \Delta x_i \to 0 Δxi0时,上式趋近于

( ∫ a b f ( x ) g ( x )   d x ) 2 ≤ ( ∫ a b f ( x ) 2   d x ) ( ∫ a b g ( x ) 2   d x ) \left( \int_{a}^{b} f(x)g(x) \, dx \right)^2 \leq \left( \int_{a}^{b} f(x)^2 \, dx \right) \left( \int_{a}^{b} g(x)^2 \, dx \right) (abf(x)g(x)dx)2(abf(x)2dx)(abg(x)2dx)

这就证明了原不等式。注意,这里的证明是启发式的,严格的证明需要用到黎曼和与积分的定义。

五、总结

欧式内积是向量空间中一种重要的运算,它具有许多优良的性质和定理。通过欧式内积,我们可以计算向量的模长、夹角、投影等,还可以进行正交化和构造正交基。在应用中,欧式内积广泛用于几何、物理、工程等领域。

欧式范数

欧式范数,也被称为欧几里得范数或2-范数,是向量空间中的一种常见范数,特别用于度量向量的长度或大小。在n维向量空间中,向量 x = ( x 1 , x 2 , … , x n ) \mathbf{x} = (x_1, x_2, \ldots, x_n) x=(x1,x2,,xn)的欧式范数定义为:

∣ ∣ x ∣ ∣ 2 = x 1 2 + x 2 2 + ⋯ + x n 2 ||\mathbf{x}||_2 = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} ∣∣x2=x12+x22++xn2

这个定义源于欧几里得几何中距离的概念,其中向量的欧式范数表示原点到该向量所表示的点的距离。欧式范数具有许多重要的性质,包括:

  1. 非负性:对于任何向量 x \mathbf{x} x,都有 ∣ ∣ x ∣ ∣ 2 ≥ 0 ||\mathbf{x}||_2 \geq 0 ∣∣x20,且 ∣ ∣ x ∣ ∣ 2 = 0 ||\mathbf{x}||_2 = 0 ∣∣x2=0当且仅当 x = 0 \mathbf{x} = \mathbf{0} x=0(零向量)。

  2. 齐次性:对于任何向量 x \mathbf{x} x和标量 a a a,都有 ∣ ∣ a x ∣ ∣ 2 = ∣ a ∣ ⋅ ∣ ∣ x ∣ ∣ 2 ||a\mathbf{x}||_2 = |a| \cdot ||\mathbf{x}||_2 ∣∣ax2=a∣∣x2

  3. 三角不等式(或称为柯西-施瓦茨不等式):对于任何向量 x \mathbf{x} x y \mathbf{y} y,都有

∣ ∣ x + y ∣ ∣ 2 ≤ ∣ ∣ x ∣ ∣ 2 + ∣ ∣ y ∣ ∣ 2 ||\mathbf{x} + \mathbf{y}||_2 \leq ||\mathbf{x}||_2 + ||\mathbf{y}||_2 ∣∣x+y2∣∣x2+∣∣y2

这些性质使得欧式范数在向量分析和线性代数中非常有用。特别是在机器学习、数据科学和工程应用中,欧式范数常用于计算向量之间的距离、正则化项以及评估算法的收敛性。

通用向量范数

是一个在向量空间上定义的实值函数,满足一定的性质,如非负性、齐次性和三角不等式。它是度量向量“长度”或“大小”的一种方式。在不同的应用场景中,可能会使用不同的向量范数。以下是一些通用的向量范数的介绍:

  1. L1范数(曼哈顿距离):
    L1范数也称为曼哈顿距离或1-范数,是向量各个元素绝对值之和。对于向量 x = ( x 1 , x 2 , … , x n ) x = (x_1, x_2, \ldots, x_n) x=(x1,x2,,xn),其L1范数定义为:
    ∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ \|x\|_1 = \sum_{i=1}^{n} |x_i| x1=i=1nxi

  2. L2范数(欧几里得距离):
    L2范数也称为欧几里得距离或2-范数,是向量各个元素平方和的平方根。对于向量 x = ( x 1 , x 2 , … , x n ) x = (x_1, x_2, \ldots, x_n) x=(x1,x2,,xn),其L2范数定义为:
    ∥ x ∥ 2 = ∑ i = 1 n x i 2 \|x\|_2 = \sqrt{\sum_{i=1}^{n} x_i^2} x2=i=1nxi2

  3. Lp范数:
    Lp范数是L1范数和L2范数的推广,对于任意正实数 p p p,Lp范数定义为:
    ∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p \|x\|_p = \left( \sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} xp=(i=1nxip)p1

  4. 无穷范数(切比雪夫距离):
    无穷范数也称为切比雪夫距离或最大范数,是向量各个元素绝对值的最大值。对于向量 x = ( x 1 , x 2 , … , x n ) x = (x_1, x_2, \ldots, x_n) x=(x1,x2,,xn),其无穷范数定义为:
    ∥ x ∥ ∞ = max ⁡ i ∣ x i ∣ \|x\|_{\infty} = \max_{i} |x_i| x=imaxxi

  5. 加权范数:
    加权范数是对向量的每个元素赋予不同的权重,然后进行范数计算。例如,对于权重向量 w = ( w 1 , w 2 , … , w n ) w = (w_1, w_2, \ldots, w_n) w=(w1,w2,,wn)和向量 x = ( x 1 , x 2 , … , x n ) x = (x_1, x_2, \ldots, x_n) x=(x1,x2,,xn),其加权L2范数可以定义为:
    ∥ x ∥ w , 2 = ∑ i = 1 n w i x i 2 \|x\|_{w,2} = \sqrt{\sum_{i=1}^{n} w_i x_i^2} xw,2=i=1nwixi2

  6. 0范数:
    0范数通常用于表示向量中非零元素的个数,尽管它并不严格满足范数的所有性质(特别是齐次性),但在稀疏表示和压缩感知等领域中仍有广泛应用。

这些范数在机器学习、信号处理、图像处理、数据压缩等多个领域都有广泛的应用。选择合适的范数通常取决于具体问题的性质和需求。

参考文献

1.《最优化导论》
2.文心一言,chatgpt

  • 15
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值