使用NVIDIA RTX A6000两卡 跑QwQ-32B(推理能力比肩满血Deepseek R1)

阿里云Qwen团队发布了其最新研究成果QwQ-32B推理模型,该成果通过大规模强化学习技术突破性地提升了语言模型的智能水平。我利用公司的的A6000,实现单节点2卡跑通这个推理模型。这个推理模型比蒸馏版本的Qwen-32B要强的多,相当于满血版的DeepSeekR1。

1. 安装方法

  1. 使用modelscope下载模型
pip install modelscope
modelscope download --model "Qwen/QwQ-32B" --cache_dir "/models"
  1. 安装vllm
pip install vllm
  1. 启动
vllm serve "/models/Qwen/QwQ-32B/"
      --served-model-name "qwq-32b"
      --enable-auto-tool-choice
      --tool-call-parser hermes
      --max-model-len 81000
      --tensor-parallel-size 2
      --port 8080

请根据显存的大小来设置max-model-len过大有可能oom

2. 能力测试

下面这个问题,蒸馏版本的32B可是推理不出来的。
问题: A+B=101 求A的B次方最大时A的取值

回答:

在这里插入图片描述

3. 性能测试

在这里插入图片描述

平均:20 tokens/s, 与Qwen2.5-32B的模型性能差不多。

一个小公司或者小团队完全够用了。同级别的L20也可以跑通,性能也不错。

以下使用R1生成的AI推理服务器配置清单,小伙伴们还等什么呀。


NVIDIA RTX A6000双卡配置清单

1. 核心计算组件

显卡:NVIDIA RTX A6000 ×2
显存容量:48GB/卡,支持FP16/FP32精度,支持NVLink桥接实现显存共享
性能定位:适合训练20B以下参数模型(FP16精度),或通过量化技术(如8-bit)运行30B-70B模型
参考单价:34,899元/卡
总价:69,798元

CPU:AMD Ryzen Threadripper PRO 5995WX(32核64线程)
作用:支持多PCIe 4.0通道(128条),避免显卡带宽瓶颈
参考价:32,000元

主板:华硕Pro WS WRX80E-SAGE SE WIFI
特性:支持双PCIe 4.0 x16插槽,8通道DDR4内存,10Gbps网口
参考价:9,500元

2. 内存与存储

内存:芝奇皇家戟 256GB(8×32GB DDR4 3600MHz)
作用:满足大模型数据预处理和CPU显存卸载需求
参考价:8,000元

存储
主硬盘:三星990 PRO 2TB NVMe SSD(7,400MB/s)
用途:存放数据集和模型检查点
参考价:1,800元
扩展存储:希捷酷狼PRO 18TB HDD ×2(RAID 1备份)
参考价:7,000元

3. 电源与散热

电源:海盗船AX1600i(1600W 80PLUS钛金)
必要性:双A6000峰值功耗约600W,需冗余供电
参考价:4,500元

散热
CPU散热:猫头鹰NH-U14S TR4风冷
参考价:800元
机箱风扇:联力积木风扇 SL120 ×6(保障双显卡风道)
参考价:1,200元

4. 机箱与扩展

机箱:联力PC-O11 Dynamic XL(全塔式)
特性:支持E-ATX主板,8槽位兼容双显卡厚度
参考价:1,500元

其他
NVLink桥接器:NVIDIA RTX A6000专用桥接器
参考价:1,500元


总价格估算

组件单价(元)数量小计(元)
显卡34,899269,798
CPU32,000132,000
主板9,50019,500
内存8,00018,000
主硬盘1,80011,800
扩展存储3,50027,000
电源4,50014,500
散热系统2,00012,000
机箱1,50011,500
NVLink桥接器1,50011,500
总计137,498元

关键配置解析

  1. 多卡性能优化
    • 通过NVLink实现显存池化,双卡总显存可达96GB(需框架支持如vLLM),可运行70B模型的8-bit量化版本(需70GB显存);
    • 推荐使用DeepSpeed或PyTorch的模型并行策略,提升训练效率。

  2. 成本与性能平衡
    • 对比云服务(如16xA100成本约50美元/小时),本地部署更适合长期训练需求;
    • 若预算有限,可先单卡运行,后期扩展至双卡。

  3. 扩展建议
    • 增加至4卡需更换主板为超微H12SSL系列,并升级电源至2000W以上;
    • 对于千亿级模型,建议采用A100/H100集群或混合精度+量化方案。

### 部署 DeepSeek-R1-Distill-Qwen-32B-GGUF 模型于 NVIDIA GeForce RTX 4090 显 #### 准备工作 为了成功部署该模型,需确保安装了必要的软件包和依赖项。具体来说: - 安装最新版本的 CUDA Toolkit 和 cuDNN 库以支持 GPU 加速计算[^1]。 - 使用 Python 的虚拟环境管理工具创建一个新的隔离环境。 ```bash conda create --name deepseek python=3.8 conda activate deepseek ``` #### 下载并配置模型文件 访问官方仓库获取预训练好的 `DeepSeek-R1-Distill-Qwen-32B-GGUF` 模型权重和其他必要资源文件。通常这些会被打包成压缩文件形式提供下载链接[^2]。 解压后得到如下结构目录: ``` /deepseek-model/ ├── config.json # 模型配置文件 └── model.bin # 权重二进制数据 ``` #### 安装所需库 通过 pip 或 conda 安装 PyTorch 及其对应的 cuda 版本以及其他依赖库如 transformers 等。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 pip install transformers sentencepiece protobuf ``` #### 编写加载脚本 编写一段简单的Python代码用于加载已准备好的模型实例化对象,并测试推理功能是否正常运作。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained("./deepseek-model/") model = AutoModelForCausalLM.from_pretrained("./deepseek-model/").to(device) input_text = "你好啊," inputs = tokenizer(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 以上步骤完成后,在命令行界面运行此 Python 脚本来验证一切设置无误即可开始正式使用这个强大的语言处理引擎了!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值