用matlab实现非线性曲线拟合,步骤如下:
(1)考虑以下的试验数据点:(第一列为x坐标,第二列为y坐标)
Data=[
0.0045 102.9128
0.0245 43.0681
0.0445 21.0126
0.0645 12.4918
0.0845 9.0246
0.1045 7.5404
0.1245 6.8773
0.1445 6.5724
0.1645 6.4311
0.1845 6.3674
0.2045 6.3316
0.2245 6.3346
0.2445 6.3371
0.2645 6.3444
0.2845 6.3543
0.3045 6.3655
0.3245 6.3774
0.3445 6.3897];
(2)为了观察试验数据点的形状,首先,绘制试验数据的散点图:
>> xData=Data(:,1);
yData=Data(:,2);
plot(xData,yData,'bo');
title('original data')
(3)运行后,得到如下所示的散点图:
(4)建立非线性曲线拟合函数lsqcurvefit().
(4.1)首先,建立非线性曲线拟合曲线的M文件:
function [feval]=curvefit_fun(x,Data)
%nonlinear curve fit function:c(1)*exp(c(2)*x)+c(3)*exp(c(4)*x)+c(5)
feval=x(1)*exp(x(2)*Data)+x(3)*exp(x(4)*Data)+x(5);
(4.2)然后,在matlab的命令行窗口输入:
x0=[10;-50;5;-0.5;5];
>> xData=xData'; yData=yData';
[x,resnorm,residual]=lsqcurvefit(@(x,xData)curvefit_fun(x,xData),x0,xData,yData)
x1=linspace(min(xData),max(xData),1000);
y1=curvefit_fun(x,x1);
hold on
plot(x1,y1,'k-')
legend('data points','fitting curve')
(4.3)得到如下所示的拟合曲线: