PNAS论文和算法解析

PNAS,论文的全名是Progressive Neural Architecture Search。这篇论文也是由谷歌团队Chenxi Liu和Zoph等人发表出来的,里面的很多思路承袭了NASNet的设计原则。本论文最大的特点是采用了SMBO(Sequential Model-based Optimization)的方法来训练Predictor(结构和controller RNN相似)。

PNAS的基本设计思想是:

  1. Cell和Block的设计原则(与NASNet一样),不区分Normal和Reduction;
  2. 将Block的备选operation减少到8个
  3. Predictor可以通过loss的SGD来优化参数
  4. Block由少到多,逐步搜索Cell结构

PNAS只搜索一种Cell,而且作者从NASNet里面发现Block的好几种操作在最后的结果都没用到,所以在operation的搜索空间候选上减少到8个。

在搜索算法上,作者也做了一些改进。采用渐进式叠加搜索,即一开始只搜索一个Block,用数据集进行训练和验证,后面再逐渐增加Block进行新一轮的搜索和训练。具体的搜索算法如下图所示。
在这里插入图片描述
图1. PNAS搜索算法流程

PNAS的SMBO搜索算法步骤:

  1. 产生只有一个Block的所有可能性的Cell,再按照NASNet的规则来搭建网络模型;
  2. 训练这一组网络模型,得到它们的精度,利用这些精度值去训练Predictor;
  3. 接下来是循环的步骤。每次循环增加一个Block,和之前选择的Block构成所有可能的子网络;
  4. 用Predictor预测步骤3中所有子网络的精度,从中挑选K个最好的子网络去训练,得到它们的精度。
  5. 用这些精度再去更新Predictor,然后跳到步骤3,开始新一轮的循环,直到Block个数达到上限。

PNASNet的搜索过程如下图所示。从图中可以看出,一开始只搜索一个Block,然后加上第2个Block,通过Predictor选择最好的K个子集进行训练和验证,如此循环下去,每次增加一个Block只要训练K个子网络即可。
在这里插入图片描述
图2. PNASNet搜索过程

Predictor和NASNet中的controller RNN具有基本相同的结构,唯一不同的是在最后一个RNN隐藏层添加一个全连接和Sigmoid回归精度。在步骤2和5中的精度就是从验证集上获得的,在Sigmoid回归那边计算Loss,用于更新Predictor的参数。在步骤4中,每增加一个Block,就让Predictor多递归计算一轮,得到添加Block后的模型预测精度。

作者在Cifar-10和ImageNet数据集上进行实验,在参数设置上,Cell的Block个数为5,第一个Cell的输出通道设为 F = 24 F=24 F=24,Normal Cell的 N = 2 N=2 N=2,每增加一个Block挑选 K = 256 K=256 K=256个子网络进行训练和评估。

下面两张图是搜索出来的PNASNet在ImageNet上的训练结果,可以看出在同等级的模型参数条件下,PNASNet比传统手工设计的网络都更好。跟NASNet、AmoebaNet基本上也是不相上下,但是PNASNet的搜索速度比它们更快,相比NASNet,PNASNet搜索的模型个数少了5倍,搜索速度快了8倍。
在这里插入图片描述
图3. 小模型PNASNet在ImageNet上的性能
在这里插入图片描述
图4. 大模型PNASNet在ImageNet上的性能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值