用户贷款风险预测之Top10初体验

本文介绍了作者参加DataCastle金融赛的经历,通过数据挖掘和模型融合技术,如xgboost、lightgbm,实现了用户贷款风险预测,并成功进入Top10。团队协作、特征工程和模型多样性是提升成绩的关键,文章分享了stacking模型的构建过程及心得。
摘要由CSDN通过智能技术生成

用户贷款风险预测之Top10初体验

写在前面:

DataCastle智慧中国杯全国大数据创新应用大赛:本次参加的是三大赛题中的用户贷款风险预测(算法竞赛)
距离上次发博文又过去近两个月了,坚持写博客是件不容易的事,还得继续努力!中间过了个年,打了个比赛,时间过得真快,不过没有闲着,用寒假时间终于拿到比较满意的成绩。参加这个比赛是快放寒假的时候,想寒假找点事做做,当时就DC有三个比赛了吧,交通赛数据太大玩不动,教育赛觉得没意思,于是乎玩了金融赛,Kaggle也关注了一下(难度系数高,后面放弃了)。昨天比赛截榜,入坑半年终于拿到Top 10!

个人比赛代码在我的github上,菜鸟参赛体验,欢迎路过大神拍砖。

队伍简介

队伍名“一战成名”,队名含义很简单,我们几个都是菜鸟级别玩家,希望可以一战成名。萍水相逢的四名队友,分别来着电子科技大学的冒菜、西安电子科技大学的DG、中南大学的熊掌以及中国

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值