P4168 [Violet] 蒲公英 Solution

Description

给定序列 a = ( a 1 , a 2 , ⋯   , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,,an),有 q q q 个查询 ( l , r ) (l,r) (l,r).
对每个查询求 a l ⋯ r a_{l\cdots r} alr 的众数,若有多个取最小的.
强制在线.
真实的 l = ( l ′ + lastans − 1 )   m o d   n ) + 1 , r = ( r ′ + lastans − 1 )   m o d   n ) + 1 l=(l^\prime+\textit{lastans}-1)\bmod n)+1,r=(r^\prime+\textit{lastans}-1)\bmod n)+1 l=(l+lastans1)modn)+1,r=(r+lastans1)modn)+1,若 l > r l>r l>r 则交换两者.

Limitations

1 ≤ n ≤ 4 × 1 0 4 1\le n\le 4\times 10^4 1n4×104
1 ≤ n ≤ 5 × 1 0 4 1\le n\le 5\times 10^4 1n5×104
1 ≤ a i ≤ 1 0 9 1\le a_i\le 10^9 1ai109
1 ≤ l ≤ r ≤ n 1\le l\le r\le n 1lrn

Solution

区间众数无法用线段树维护,但 n , m n,m n,m 不大,可以用分块.
首先 a i a_i ai 很大,需要先离散化.
然后借助一个桶 cnt \textit{cnt} cnt 预处理 pre i , j \textit{pre}_{i,j} prei,j 表示 a i a_i ai 在第 1 ∼ j 1\sim j 1j 块的出现次数.
还有 mode i , j \textit{mode}_{i,j} modei,j 表示第 i ∼ j i\sim j ij 块的众数.

考虑查询,如果 [ l , r ] [l,r] [l,r] 在单块内或相邻块间,我们直接暴力.
否则,我们统计两端散块内的 a i a_i ai中间整块内 以及 两端 的出现次数,存入 cnt \textit{cnt} cnt 中,并求出这部分的众数.
然后查询整块间的众数,以及 [ l , r ] [l,r] [l,r] 间这个数的出现次数(整块散块分开算),然后判断并更新答案.
有几个坑:

  • mode i , j \textit{mode}_{i,j} modei,j 前要先继承 mode i , j − 1 \textit{mode}_{i,j-1} modei,j1 的结果.
  • 答案要转化为离散化前的.
  • cnt \textit{cnt} cnt 用完要清空,可以只清空用过的部分.

B = n B=\sqrt n B=n ,时间复杂度 O ( ( n + m ) n ) O((n+m)\sqrt n) O((n+m)n ).

Code

4.09 KB , 1.29 s , 9.62 MB    (in   total,   C++20   with   O2) 4.09\text{KB},1.29\text{s},9.62\text{MB}\;\texttt{(in total, C++20 with O2)} 4.09KB,1.29s,9.62MB(in total, C++20 with O2)
fastio 删了

#include <bits/stdc++.h>
using namespace std;

using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;

template<class T>
bool chmax(T &a, const T &b){
	if(a < b){ a = b; return true; }
	return false;
}

template<class T>
bool chmin(T &a, const T &b){
	if(a > b){ a = b; return true; }
	return false;
}

namespace fastio {}
using fastio::read;
using fastio::write;

struct Block {
	int n, v, size, blocks;
	vector<int> a, belong, L, R, cnt;
	vector<vector<int>> pre, mode; 
	
	inline Block() {}
	inline Block(const vector<int>& _a, int _v) : v(_v), a(_a) {
		n = a.size();
		size = (int)sqrt(n);
		blocks = (n + size - 1) / size;
		
		belong.resize(n);
		L.resize(blocks);
		R.resize(blocks);
		
		for (int i = 0; i < blocks; i++) {
			L[i] = i * size;
			R[i] = std::min(L[i] + size, n) - 1;
			for (int j = L[i]; j <= R[i]; j++) belong[j] = i;
		}
		
		pre.resize(blocks, vector<int>(v, 0));
		mode.resize(blocks, vector<int>(blocks, -1));
		cnt.resize(v);
		init();
	}
	
	// Prepare
	inline void init() {
		for (int i = 0; i < n; i++) 
		    for (int j = belong[i]; j < blocks; j++) pre[j][a[i]]++;
		
		for (int i = 0; i < blocks; i++) {
			clear();
			for (int j = i; j < blocks; j++) {
				if (j > i) mode[i][j] = mode[i][j - 1];
				for (int k = L[j]; k <= R[j]; k++) {
					cnt[a[k]]++;
					update(mode[i][j], a[k], cnt[a[k]]);
				}
			}
		}
		clear();
	}
	
	// Update
	inline void update(int& x, int y, int c) {
		if (x == -1 || (c > cnt[x]) || (c == cnt[x] && y < x)) x = y;
	}
	
	// Clear
	inline void clear() { cnt.assign(v, 0); }
	
	inline void clear(int l, int r) {
		for (int i = l; i <= r; i++) cnt[a[i]] = 0;
	}
	
	// Count
	inline int count_block(int bl, int br, int k) { 
	    return pre[br - 1][k] - pre[bl][k];
	}
	
	inline int count_part(int l, int r, int k) {
		int res = 0;
		for (int i = l; i <= r; i++) res += (a[i] == k);
		return res;
	}
	
	// Add to the bucket
	inline void add(int l, int r, int bl, int br) {
		for (int i = l; i <= r; i++)
		    if (!cnt[a[i]]) cnt[a[i]] += count_block(bl, br, a[i]);
	}
	
	// Update the answer
	inline void get_part(int& ans, int l, int r) {
		for (int i = l; i <= r; i++) {
			cnt[a[i]]++;
			update(ans, a[i], cnt[a[i]]);
		}
	}
	
	// Query
	inline int query(int l, int r) {
		const int bl = belong[l], br = belong[r];
		if (br - bl <= 2) {
			int ans = -1;
			get_part(ans, l, r), clear(l, r);
			return ans;
		}
		
		int ans = -1;
		add(l, R[bl], bl, br), add(L[br], r, bl, br);
		get_part(ans, l, R[bl]), get_part(ans, L[br], r);
		
		int k = mode[bl + 1][br - 1];
		int cntk = (count_block(bl, br, k) + 
		            count_part(l, R[bl], k) + 
		            count_part(L[br], r, k));

		update(ans, k, cntk);
		clear(l, R[bl]), clear(L[br], r);
		return ans;
	}
};

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	
	const int n = read<int>(), m = read<int>();
	vector<int> a(n);
	for (int i = 0; i < n; i++) a[i] = read<int>();
	
	auto disc = a;
	sort(disc.begin(), disc.end());
	disc.erase(unique(disc.begin(), disc.end()), disc.end());
	for (int i = 0; i < n; i++) {
		a[i] = lower_bound(disc.begin(), disc.end(), a[i]) - disc.begin();
	}
	
	Block blk(a, disc.size());
	for (int i = 0, l, r, lst = 0; i < m; i++) {
		l = read<int>(), r = read<int>();
		l = (l + lst - 1) % n;
	    r = (r + lst - 1) % n;
		if (l > r) swap(l, r);
		
		write(lst = disc[blk.query(l, r)]);
		putchar_unlocked('\n');
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值