基于YOLOv8模型的车载摄像头下车辆目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOv8模型的车载摄像头下车辆目标检测系统可用于日常生活中检测与定位车辆目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

需要源码的朋友在后台私信博主获取下载链接

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种车载摄像头下车辆目标检测模型,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

(1)打开项目目录,在搜索框内输入cmd打开终端
在这里插入图片描述

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
在这里插入图片描述

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
在这里插入图片描述

数据集介绍

本系统使用的船只目标数据集手动标注了车辆这1个类别,数据集总计1591张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的人体摔倒行为检测识别数据集包含训练集1266张图片,验证集325张图片,选取部分数据部分样本数据集如下图所示。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在这里插入图片描述

在训练时也可指定更多的参数,大部分重要的参数如下所示:在这里插入图片描述

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
在这里插入图片描述

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。另外本博文的PDF与更多的目标检测识别系统请关注笔者的微信公众号 BestSongC。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示
在这里插入图片描述

<think>嗯,用户想要构建一个基于深度学习的鸡蛋检测识别系统,使用PyTorchPyside6YOLOv5模型。首先,我需要理解用户的需求。他们可能是一个开发者或者研究人员,想要实现一个能够自动检测鸡蛋的系统,可能用于农业、食品加工或者零售行业。用户可能已经了解了一些相关的技术,比如YOLOv5和PyTorch,但需要具体的步骤来整合这些技术,特别是如何结合图形界面Pyside6。 接下来,我需要回顾相关的引用内容。根据引用[1]和[3],已经存在类似的系统,比如刀具检测和鸡蛋检测,都是基于YOLOv5和Pyside6的。这些系统的大致流程包括数据准备、模型训练、界面开发以及系统集成。所以,用户的问题应该可以通过类似的步骤来解决,但需要具体到鸡蛋检测的场景。 首先,数据准备是关键。用户需要收集鸡蛋的图像,并进行标注。YOLOv5使用的是YOLO格式的标注,每张图片对应一个txt文件,包含类别和边界框信息。可能需要注意鸡蛋在不同环境下的多样性,比如光照、遮挡等因素,可能需要数据增强来提高模型的鲁棒性。 然后是模型训练。根据引用[3],YOLOv5的预训练模型作为起点,进行迁移学习。用户需要配置好数据集的结构,调整超参数,比如学习率、批次大小等。训练过程中可能会用到数据增强技术,如随机裁剪、旋转、色彩调整等,这些在YOLOv5中都有内置的支持。另外,学习率衰减和优化器选择也是关键步骤,需要确保模型收敛并防止过拟合。 接下来是PySide6界面开发。这部分需要设计一个用户友好的界面,能够上传图片或视频,调用训练好的模型进行检测,并展示结果。引用[1]和[3]提到,界面功能包括文件选择、实时检测、结果展示和导出。需要用到PySide6的组件,比如QMainWindow、QPushButton、QLabel等,同时需要处理多线程,避免界面卡顿。 系统集成方面,需要将训练好的YOLOv5模型嵌入到PySide6的应用中。这里可能需要使用PyTorch的推理功能,加载模型并对输入图像进行处理。预处理步骤如缩放、归一化,后处理如非极大值抑制(NMS)来过滤检测框。同时,需要处理OpenCV的图像格式转换,确保检测结果正确叠加在图像上。 用户可能遇到的难点包括环境配置,比如PyTorchPySide6YOLOv5的依赖安装,需要确保版本兼容。此外,模型训练可能需要一定的计算资源,比如GPU加速,用户可能需要指导如何设置训练参数以适应不同的硬件环境。另外,界面与模型推理的结合可能需要多线程处理,防止界面在检测过程中无响应。 可能还需要考虑模型的优化,比如引用[3]提到的后续将替换为YOLOv8等新模型,但目前用户指定的是YOLOv5,所以需要专注于该版本的实现。同时,用户可能需要扩展功能,比如导出检测结果、统计计数等,这些在界面设计中需要预留接口。 总结步骤的话,应该是:1. 准备数据集并标注;2. 配置YOLOv5环境,训练模型;3. 开发PySide6界面;4. 将模型集成到界面中,实现检测功能;5. 测试和优化整个系统。每个步骤都需要详细的说明,特别是代码示例和环境搭建的指导,确保用户能够按步骤操作。</think>### 基于YOLOv5+PyTorch+Pyside6的鸡蛋检测系统构建步骤 #### 一、系统架构设计 $$系统架构 = 数据采集 + 模型训练 + 界面开发 + 系统集成$$ 1. **数据层**:鸡蛋图像数据集(需包含不同角度、光照、遮挡情况) 2. **算法层**:YOLOv5目标检测模型(预训练+迁移学习) 3. **界面层**:基于Pyside6的可视化交互界面 4. **应用层**:检测结果输出与保存功能 #### 二、关键技术实现 1. **数据准备阶段**: ```python # YOLO格式标注示例(class_id x_center y_center width_height) 0 0.543 0.467 0.12 0.23 ``` - 建议数据增强配置(`data/egg.yaml`): ```yaml train: ../train/images val: ../val/images nc: 1 # 鸡蛋类别数量 names: ['egg'] ``` 2. **模型训练命令**: ```bash python train.py --img 640 --batch 16 --epochs 100 --data egg.yaml --weights yolov5s.pt ``` 3. **PySide6界面核心代码**: ```python class MainWindow(QMainWindow): def __init__(self): super().__init__() self.model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') # 创建文件选择按钮 self.btn_open = QPushButton("选择图片", self) self.btn_open.clicked.connect(self.open_image) # 显示检测结果的标签 self.label_result = QLabel(self) self.label_result.setAlignment(Qt.AlignCenter) ``` #### 三、系统集成流程 1. **模型推理函数**: ```python def detect_egg(image_path): results = self.model(image_path) detections = results.pandas().xyxy[0] return detections[detections['confidence'] > 0.5] # 设置置信度阈值 ``` 2. **结果可视化处理**: ```python # 使用OpenCV绘制检测框 for _, row in detections.iterrows(): cv2.rectangle(img, (int(row['xmin']), int(row['ymin'])), (int(row['xmax']), int(row['ymax'])), (0,255,0), 2) ``` #### 四、环境配置要求 1. 基础环境安装: ```bash pip install torch torchvision torchaudio pip install pyside6 opencv-python pandas git clone https://github.com/ultralytics/yolov5 # YOLOv5官方仓库 ``` #### 五、性能优化建议 $$mAP = \frac{1}{n}\sum_{i=1}^{n} AP_i$$ - 通过调整输入分辨率(`--img`参数)平衡速度与精度 - 使用知识蒸馏技术压缩模型[^3] - 添加注意力机制模块提升小目标检测能力
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值