在当今的AI应用中,问答系统已经成为一个重要的应用领域。为了提高问答系统的精确度和专业性,我们通常需要针对不同的领域构建特定的检索器(retriever)。本文将介绍如何使用多索引路由(RAG:Retrieval-Augmented Generation)实现一个跨域问答应用,通过对不同领域的检索器进行动态路由,以提高问答的准确性和效率。
一、技术背景介绍
在这篇文章中,我们将使用一个基于RAG的应用来实现跨域问答。该应用能够智能地在多个领域的检索器中路由查询,从而提高回答的准确性。它主要涉及以下几个领域的数据源:
- PubMed:医学文献
- ArXiv:科研论文
- Wikipedia:通用知识
- Kay AI:用于获取SEC文件的专用数据源
二、核心原理解析
RAG模型结合了信息检索和生成技术。基本原理是对于用户提出的问题,首先从多个可能的数据源中检索相关文档,然后基于这些文档生成回答。多索引路由的关键在于为每个领域配置一个检索器,并根据问题的特征动态选择最合适的检索器进行查询。
三、代码实现演示(重点)
下面是实现这一功能的示例代码,首先需要进行必要的环境设置:
export KAY_API_KEY="<YOUR_API_KEY>" # 设置Kay AI的API密钥
接下来,确保安装LangChain CLI,这对于创建和管理我们的应用至关重要:
pip install -U langchain-cli
创建一个新的LangChain项目并添加RAG多索引路由包:
langchain app new my-app --package rag-multi-index-router
或者将其添加到现有项目中:
langchain app add rag-multi-index-router
在你的server.py
文件中,添加以下代码以配置路由:
from rag_multi_index_router import chain as rag_multi_index_router_chain
from langserve import add_routes # 确保import路径正确
# 添加路由到FastAPI应用中
add_routes(app, rag_multi_index_router_chain, path="/rag-multi-index-router")
为了更好地跟踪和调试应用,我们可以使用LangSmith:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # 如果未指定,默认为"default"
启动LangServe实例:
langchain serve
这将在本地启动FastAPI应用,运行在http://localhost:8000
,可以在http://127.0.0.1:8000/docs
查看所有接口模板。
四、应用场景分析
这类问答系统可广泛应用于需要从多领域知识库检索信息的场景,例如:
- 医疗咨询平台:从医学文献和通用知识中获取答案。
- 学术研究辅助:在科研数据库和通用文献中快速查找相关信息。
- 金融法务平台:结合SEC文件和通用信息为用户提供专业解答。
五、实践建议
- 选择可靠的数据源:根据应用需求选择相应的数据源,以确保答案的准确性。
- 优化检索器配置:为每个领域的检索器配置适当的参数,以提高查询效率。
- 定期更新知识库:确保检索器查询的内容是最新的,以提高回答的时效性。
如果遇到问题欢迎在评论区交流。
—END—