Description
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,
每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(
这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi
分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过
一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可
以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你
采取最优策略,平均情况你一共能在奖励关得到多少分值?
Input
第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。
Output
输出一个实数,保留六位小数,即在最优策略下平均情况的得分。
Sample Input
1 0
2 0
Sample Output
HINT
【数据规模】
1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。
状压DP 令f[i][j]为第i次扔东西 当前状态为j的期望 转移就是f[i][j]+=max(f[i+1][j|(1<<(l-1))]+v[l],f[i+1][j])/n;
也就是选或不选 反过来转移可以使得f[i][j]这个状态只会被算1次 而正着算会出现重复 如果是最优性的dp结构不会有问题 但在递推或者期望这样的模型会出现问题 最后答案即f[1][0]
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=1<<17;
double f[110][maxn];
int s[20];
int v[20];
int main(){
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
int n,k;
scanf("%d %d",&k,&n);
int x;
for(int i=1;i<=n;i++){
scanf("%d",&v[i]);
scanf("%d",&x);
while(x!=0){
s[i]|=(1<<(x-1));
scanf("%d",&x);
}
}
int top=(1<<n)-1;
for(int i=k;i>=1;i--){
for(int j=0;j<=top;j++){
for(int l=1;l<=n;l++){
if((s[l]&j)==s[l])
f[i][j]+=max((f[i+1][j|(1<<(l-1))]+v[l])/double(n),f[i+1][j]/double(n));
else f[i][j]+=f[i+1][j]/double(n);
}
}
}
printf("%.6lf\n",f[1][0]);
return 0;
}