矩阵行秩与列秩的关系。

文章探讨了矩阵中的行秩与列秩的概念,指出它们通常相等,并可以通过行变换或列变换来求解。行满秩和列满秩的定义被阐述,对于方阵,两者是等价的。同时强调行满秩和列满秩并不一定相等,除非矩阵是行列式非零的方阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.行秩与列秩

前序:
在这里插入图片描述
所以,行秩与列秩的关系为,一般情况下总是相等,这也是为什么,
我们既可以:
通过行变换也可以通过列变换求秩。
通过对行的初等列变换,以及对列的初等行变换求极大无关组,都是可以的。

2.行满秩与列满秩

①行满秩与列满秩。
若矩阵秩等于列数,称为列满秩。
若矩阵秩等于行数,称为行满秩。
②即是行满秩又是列满秩一定是方阵。
既是行满秩,又是列满秩则为n阶矩阵即方阵,所以如果是方阵,则行满秩与列满秩是等价的。
③行满秩与列满秩没有必要联系。
行满秩与列满秩是两个基本概念,两者不具有严格关系。
在一个矩阵中,虽然行向量的极大线性无关组数等于行数,但是列向量的极大无关线性组却不等于列向量数。只有行列式不为0的方阵,二者才相等。
④注意与行秩列秩区分。
在一个矩阵中行秩一般等于列秩=秩,但是我这里说的是行秩,列秩,而不是行满秩,列满秩不要弄混了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源梦想

制作不易,给几分窝囊费大哥们。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值