拉普拉斯变换学习笔记

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、拉普拉斯变换的定义
  • 二、拉普拉斯变换的性质
  • 三、拉普拉斯逆变换


前言

本篇文章将介绍拉普拉斯变换,它是经典控制理论中重要的数学工具。拉普拉斯广泛应用于工程分析中。它可以把一个时域上的函数f(t)转化成一个复数域上的函数F(s),从而简化分析问题的难度。通俗的来讲,就是把一个难以计算的函数式子转化为一个易于计算的代数式子。


提示:以下是本篇文章正文内容,下面案例可供参考

一、拉普拉斯变换的定义

以图1.1所示的电路系统为例,电流的动态微分方程为

                                           e(t)=L\frac{di(t)}{dt}+Ri(t)                                 

其中,e(t)表示电压,i(t)表示电流,L表示电感,R表示电阻

                                                                图1.1

定义此动态系统的输入为电压u(t)=e(t),输出为电流x(t)=i(t),则刚才的式子可以写成

                                                         u(t)=L\frac{dx(t)}{dt}+Rx(t)

该式可以用图b所示的框图表示。其中,在系统的输入与输出中间有一个转化过程,设为g(t)。g(t)就是系统的单位冲激响应h(t)(g(t)=h(t))。系统的输入u(t)、输出x(t)与g(t)之间是卷积运算关系,即

                                         x(t)=u(t)*g(t)=\int_{0}^{t}u(\tau )g(t-\tau )d\tau

若要分析系统的输x(t),就需要分析卷积u(t)*g(t),或者求解微分方程。但求解它们的过程会非常复杂,尤其是处理复杂系统的时候。因此,在经典控制理论当中,一个强大的数学工具将引入进行辅助分析,这个数学工具就是拉普拉斯变换。通过拉普拉斯变换,系统的微分方程将转化为代数方程,卷积运算则会变成乘法运算。现在,我们暂时抛开上面的例子,先来讨论拉普拉斯变换的定义。

对一个函数f(t)做拉普拉斯变换变换,可以将其从时域(t)转换成复数域(s),它的定义为

                                               L[f(t)]=F(s)=\int_{0}^{00}f(t)e^{-st}dt

其中,s=\sigma +j\omega,是一个复数

一些拉普拉斯变换的例子,主要靠复变函数与积分,这里不在做详细解释

常见的拉普拉斯变换公式

L[\vartheta (t)]=1

L(1)=\frac{1}{s}

L[e^{^{-at}}]=\frac{1}{s+a}

L[sin(at)]=\frac{a}{s^{2}+a^{^{2}}}

L[cos(at)]=\frac{s}{s^{2}+a^{2}}

L[t^{m}]=\frac{m!}{s^{m+1}}

二、拉普拉斯变换的性质

根据拉普拉斯的线性性质,可以得到以下公式

L[\alpha f1(t)+\beta f2(t)]=\alpha F1(s)+\beta F2(s)

L[e^{at}f(t)]=F(s-a)

L[f'(t)]=sF(s)-f(0)

L[f''(t)]=s^{2}F(s)-sf(0)-f'(0)

L[f^{(n)}(t)]=s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f(0)-...-f^{n-1}(0)

L[tf[t]]=-F(s)

L[t^{n}f(t)]=(-1)^{n}F^{(n)}(s)

利用这些公式可以进行复杂式子的拉普拉斯变换

三、拉普拉斯逆变换

本部分将介绍拉普拉斯逆变换,它是反向使用拉普拉斯变换,将F(s)变回时域函数f(t),即

                                              f(t)=L^{-1}[F(s)]

常用方法

1、部分分式展开法

将X(s)分解为\frac{1}{(s-p)^{r}}因式之和,然后利用拉普拉斯公式来求它的逆变换。

2、留数法

变换公式为                   f(t)=\sum_{k=1}^{n}Res[F(s)e^{st}]

此方法较为复杂,不推荐使用

例题:

已知F(s)=\frac{4s+8}{s^{2}+2s+5}   ,求f(t)

解:

                F(s)=\frac{4s+8}{s^{2}+2s+5}=\frac{4s+8}{(s+1+2j)(s+1-2j)}

                        =\frac{A}{s+1+2j}+\frac{B}{s+1-2j}

利用分式分解法可得

                                  A=j+2

                                 B=-j+2

可以得到

                          f(t)=L^{-1}[F(s)]=(j+2)e^{(-1-2j)t}+(-j+2)e^{(-1+2j)t}

                                  =e^{-t}(je^{-2jt}+2e^{-2jt}-je^{2jt}+2e^{2jt})

                                  =e^{-t}(j(e^{-2jt}-e^{2jt})+2(e^{-2jt}+e^{2jt}))

                                  =e^{-t}(2sin2t+4cos2t)

在该题中,F(s)分母部分为零时,得到:s1=-1-2j和s2=-1-2j出现在了f(t)的指数部分。因为它们是复数,根据欧拉公式,复数将引入正弦(余弦)函数,带来了振动。这说明,当一个函数f(t)经过拉普拉斯变换之后,如果F(s)分母的部分的根存在虚部,那么f(t)就会存在振动。而且,通过分析F(s)的根就可以了解原函数f(t)的时间表现。


总结

本篇文章中牵涉到许多关于拉普拉斯变换的公式,大家一定要多记多使用,这样才能更好的掌握它们。

  • 22
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

客场的消音器

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值