熵权法EW与层次分析法AHP之数学原理及实例

本文详细介绍了熵权法(EW)和层次分析法(AHP)的数学原理,以及如何将两者结合形成iEW-AHP方法,用于解决多目标决策问题。熵权法基于数据差异度确定权重,而AHP依赖专家经验。通过实例,文章展示了如何构建判断矩阵,进行数据归一化处理,并应用iEW-AHP计算综合权重,以提高决策的准确性和合理性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.概述

         对于多指标或多目标决策问题,由于涉及到多个指标或属性,在对实测数据进行评价时,需要确定这些指标之间的相互权重,各指标权重的客观性与合理性也会大大影响到最终的评价结果.目前对于指标权重确定的方法有很多,常见有专家调查法、熵权法(EW)、层次分析法(AHP)等.本文重点介绍后两种方法的原理并对比其特点,提出一种改进的基于熵权重的层次分析法iEW-AHP,对某种行为特征进行评价从而给出相应的评分结果.

2.熵权法EW

熵权法EW(Entropy Weight)的基本原理是某指标的指标值差异程度越大,则信息熵越小,该指标提供的信息量越大,该指标的权重便越大;反之,某项指标值差异程度越小,则信息熵越大,该指标提供的信息量越小,该指标的权重也越小.熵权法依据方案的真实数据计算,计算结果更加客观,决策结果可信度高,并且因其计算简单,广泛运用于解决多目标决策问题.

注意:而熵权法是统计学领域,与信息学领域对熵值的解释有所不同。简言之,在统计学领域中,当数据越分散时,熵值越小,可认为该数据包含信息越多,因此权重越大,这也是熵权法的解释;而在信息学领域中,数据越分散,计算熵值越小,数据中的信息越不可靠,可以说数据包含

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scott198512

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值