引用次数700+
文章中利用SVM解决multiple-instance learning问题,提出了mi-SVM及MI-SVM算法。
1、什么是multiple-instance learning?
Multiple-instance learning (MIL) is a variation on supervised learning. Instead of receiving a set of instances which are individually labeled, the learner receives a set of labeled bags, each containing many instances. In the simple case of multiple-instance binary classification, a bag may be labeled negative if all the instances in it are negative. On the other hand, a bag is labeled positive if there is at least one instance in it which is positive. From a collection of labeled bags, the learner tries to either (i) induce a concept that will label individual instances correctly or (ii) learn how to label bags without inducing the concept(来自Wiki)
数学描述:
假设我们有一些图像样本,图像中含有人的图片为正样本,不含有人的为负样本。整个图像就可以视为一个bag,假设我们有m个图像,用 B1,B2,...,Bm 代表这些图像,用 YI 表示 BI 的正负。在这些图像中,我们利用滑动的矩形窗切取小的图像,从而可以得到n个pattern xi ,那么 BI={