Support Vector Machines for Multiple-Instance Learning

本文介绍了如何运用支持向量机(SVM)解决多实例学习(MIL)问题,提出mi-SVM和MI-SVM算法。在MIL中,学习者处理的是包含多个未单独标记实例的标签包。文章讨论了MIL的基本概念,并通过数学描述解释了如何在图像样本中应用这些算法来区分含人与不含人的图像。
摘要由CSDN通过智能技术生成

引用次数700+
文章中利用SVM解决multiple-instance learning问题,提出了mi-SVM及MI-SVM算法。

1、什么是multiple-instance learning?
Multiple-instance learning (MIL) is a variation on supervised learning. Instead of receiving a set of instances which are individually labeled, the learner receives a set of labeled bags, each containing many instances. In the simple case of multiple-instance binary classification, a bag may be labeled negative if all the instances in it are negative. On the other hand, a bag is labeled positive if there is at least one instance in it which is positive. From a collection of labeled bags, the learner tries to either (i) induce a concept that will label individual instances correctly or (ii) learn how to label bags without inducing the concept(来自Wiki)
数学描述:
假设我们有一些图像样本,图像中含有人的图片为正样本,不含有人的为负样本。整个图像就可以视为一个bag,假设我们有m个图像,用 B1,B2,...,Bm 代表这些图像,用 YI 表示 BI 的正负。在这些图像中,我们利用滑动的矩形窗切取小的图像,从而可以得到n个pattern xi ,那么 BI={

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值