HDOJ 1728 逃离迷宫 (BFS)

http://acm.hdu.edu.cn/showproblem.php?pid=1728

不得不说我还好水……原来觉得迷宫这类的搜索我已经做得不错了,但是这道题让我重新认识了现实……

题意:在一个M*N的迷宫里,gloria要从一个地方走到另一个地方,判断是否可以在K次转弯内到达目的地。

思路:BFS时先从一个点朝一个方向一直搜下去,直到不能搜了为止,然后再搜另一个方向。这样可以保证转弯次数都是最小的。

这个题开始直接用简单的BFS处理,WA,当时用的是二维数组标记是否访问过,但是这样是错的,因为有四个方向,这个方向走过后可能还可以朝另一个方向走;

后来开三维数组标记某个位置的四个方向是否访问,但是竟然爆内存了……

然后改换DFS,超时;接着进行了一下剪枝,记录到每个位置时的转弯次数,如果下次再到达这点时的转弯次数大于等于这个次数就不再搜了,然后还是超时……

最后在网上找结题报告才找到了这种方法……

#include<cstdio>
#include<cstring>
#include<queue>

using namespace std;

struct node
{
    int x,y;
}now,tmp;

queue<struct node>q;

int m,n;
char maze[111][111];
int vis[111][111];
int k,bx,by,ex,ey;

int dx[]={1,-1,0,0};
int dy[]={0,0,1,-1};

bool bfs()
{
    while(!q.empty())
        q.pop();
    now.x=bx;now.y=by;
    q.push(now);
    while(!q.empty())
    {
        now=q.front();
        for(int i=0;i<4;i++)
        {
            tmp.x=now.x+dx[i];
            tmp.y=now.y+dy[i];
            while(tmp.x>0&&tmp.y>0&&tmp.x<=m&&tmp.y<=n&&maze[tmp.x][tmp.y]!='*')
            {
                if(vis[tmp.x][tmp.y]==-1)
                {
                    q.push(tmp);
                    vis[tmp.x][tmp.y]=vis[now.x][now.y]+1;
                    if(tmp.x==ex&&tmp.y==ey)
                        return true;
                }
                tmp.x+=dx[i];tmp.y+=dy[i];
            }
        }
        q.pop();
    }
    return false;
}

int main()
{
    int t;
    while(scanf("%d",&t)==1)
    {
        while(t--)
        {
            memset(vis,-1,sizeof(vis));
            scanf("%d %d",&m,&n);
            int i;
            for(i=1;i<=m;i++)
                scanf("%s",maze[i]+1);
            scanf("%d %d %d %d %d",&k,&by,&bx,&ey,&ex);
            if(bx==ex&&by==ey)
            {
                printf("yes\n");
                continue;
            }
            if(bfs())
            {
                if(vis[ex][ey]<=k)
                    printf("yes\n");
                else
                    printf("no\n");
            }
            else
                printf("no\n");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值