引言
在当前人工智能的应用场景中,评估和跟踪大型语言模型(LLM)的性能变得尤为重要。TruLens 是一个开源工具包,为基于LLM的应用程序提供了强大的工具,用于评估和跟踪。这篇文章将会引导你如何使用TruLens评估和跟踪基于LangChain构建的LLM应用程序。
主要内容
1. 安装和设置
首先,确保在你的Python环境中安装了TruLens评估工具包:
pip install trulens-eval
2. 快速开始
在继续之前,可以参考TruLens文档中的详细集成信息。安装完成后,你便可以开始为你的LLM链启用TruLens的评估和跟踪功能。
3. 追踪与反馈函数
创建你的LLM链后,可以使用TruLens自带的反馈函数进行评估和追踪。TruLens不仅提供开箱即用的反馈函数,还支持自定义扩展。
from trulens_eval.feedback import Feedback, Huggingface, OpenAI
# 初始化基于HuggingFace的反馈函数类
hugs = Huggingface()
openai = OpenAI()
# 定义使用HuggingFace的语言匹配反馈函数
lang_match = Feedback(hugs.language_match).on_input_output()
# 定义使用OpenAI的问答相关性反馈函数
qa_relevance = Feedback(openai.relevance).on_input_output()
# 定义输入的毒性反馈函数
toxicity = Feedback(openai.toxicity).on_input()
4. 链的构建
在设置好反馈函数后,可以将应用程序用TruChain进行包装,以便详细记录、跟踪和评估LLM应用程序。
from trulens_eval import TruChain
# 用TruChain包装你的链
truchain = TruChain(
chain,
app_id='Chain1_ChatApplication',
feedbacks=[lang_match, qa_relevance, toxicity]
)
# # 使用API代理服务提高访问稳定性
truchain("que hora es?")
代码示例
以下是一个完整的代码示例,演示如何设置TruLens进行评估:
from trulens_eval.feedback import Feedback, Huggingface, OpenAI
from trulens_eval import TruChain, Tru
# 初始化反馈函数
hugs = Huggingface()
openai = OpenAI()
lang_match = Feedback(hugs.language_match).on_input_output()
qa_relevance = Feedback(openai.relevance).on_input_output()
toxicity = Feedback(openai.toxicity).on_input()
# 包装链
truchain = TruChain(
chain,
app_id='Chain1_ChatApplication',
feedbacks=[lang_match, qa_relevance, toxicity]
)
# 使用反馈函数对LLM应用进行评估
truchain("que hora es?")
# 运行TruLens仪表板以查看评估结果
tru = Tru()
tru.run_dashboard()
常见问题和解决方案
问题:在某些地区访问API不稳定怎么办?
由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高API的访问稳定性。
问题:如何扩展自定义反馈函数?
TruLens允许开发者根据自身需求扩展反馈函数,可以参照官方文档进行扩展。
总结与进一步学习资源
TruLens为LLM应用的评估和跟踪提供了一套完整的工具。借助这些功能,你可以优化和提高你的应用在不同质量指标上的表现。想要深入了解TruLens的更多功能,请访问TruLens官方网站。
参考资料
- TruLens Documentation: trulens.org
- LangChain Documentation: LangChain Docs
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—