使用TruLens提升大型语言模型应用的质量评估

引言

在当前人工智能的应用场景中,评估和跟踪大型语言模型(LLM)的性能变得尤为重要。TruLens 是一个开源工具包,为基于LLM的应用程序提供了强大的工具,用于评估和跟踪。这篇文章将会引导你如何使用TruLens评估和跟踪基于LangChain构建的LLM应用程序。

主要内容

1. 安装和设置

首先,确保在你的Python环境中安装了TruLens评估工具包:

pip install trulens-eval

2. 快速开始

在继续之前,可以参考TruLens文档中的详细集成信息。安装完成后,你便可以开始为你的LLM链启用TruLens的评估和跟踪功能。

3. 追踪与反馈函数

创建你的LLM链后,可以使用TruLens自带的反馈函数进行评估和追踪。TruLens不仅提供开箱即用的反馈函数,还支持自定义扩展。

from trulens_eval.feedback import Feedback, Huggingface, OpenAI

# 初始化基于HuggingFace的反馈函数类
hugs = Huggingface()
openai = OpenAI()

# 定义使用HuggingFace的语言匹配反馈函数
lang_match = Feedback(hugs.language_match).on_input_output()

# 定义使用OpenAI的问答相关性反馈函数
qa_relevance = Feedback(openai.relevance).on_input_output()

# 定义输入的毒性反馈函数
toxicity = Feedback(openai.toxicity).on_input()

4. 链的构建

在设置好反馈函数后,可以将应用程序用TruChain进行包装,以便详细记录、跟踪和评估LLM应用程序。

from trulens_eval import TruChain

# 用TruChain包装你的链
truchain = TruChain(
    chain,
    app_id='Chain1_ChatApplication',
    feedbacks=[lang_match, qa_relevance, toxicity]
)

# # 使用API代理服务提高访问稳定性
truchain("que hora es?")

代码示例

以下是一个完整的代码示例,演示如何设置TruLens进行评估:

from trulens_eval.feedback import Feedback, Huggingface, OpenAI
from trulens_eval import TruChain, Tru

# 初始化反馈函数
hugs = Huggingface()
openai = OpenAI()

lang_match = Feedback(hugs.language_match).on_input_output()
qa_relevance = Feedback(openai.relevance).on_input_output()
toxicity = Feedback(openai.toxicity).on_input()

# 包装链
truchain = TruChain(
    chain, 
    app_id='Chain1_ChatApplication', 
    feedbacks=[lang_match, qa_relevance, toxicity]
)

# 使用反馈函数对LLM应用进行评估
truchain("que hora es?")

# 运行TruLens仪表板以查看评估结果
tru = Tru()
tru.run_dashboard()

常见问题和解决方案

问题:在某些地区访问API不稳定怎么办?

由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高API的访问稳定性。

问题:如何扩展自定义反馈函数?

TruLens允许开发者根据自身需求扩展反馈函数,可以参照官方文档进行扩展。

总结与进一步学习资源

TruLens为LLM应用的评估和跟踪提供了一套完整的工具。借助这些功能,你可以优化和提高你的应用在不同质量指标上的表现。想要深入了解TruLens的更多功能,请访问TruLens官方网站

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>