Python数据分析 | (25) 层次化索引

在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析。接下来的几篇博客将关注可以聚合、合并、重塑数据的方法。

首先,我会介绍pandas的层次化索引,它广泛用于以上操作。然后,我将深入介绍了一些特殊的数据操作。在之后的博客中,你可以看到这些工具的多种应用。

目录

1. 层次化索引

2. 重排与分级排序

3. 根据级别汇总统计

4. 使用DataFrame的列进行索引


1. 层次化索引

层次化索引(hierarchical indexing)是pandas的一项重要功能,它使你能在 一个轴上拥有多个(两个以上)索引级别。抽象点说,它使你能以低维度形 式处理高维度数据。我们先来看一个简单的例子:创建一个Series,并用一 个由列表或数组组成的列表作为索引:

import numpy as np
import pandas as pd
pd.options.display.max_rows = 20
np.random.seed(12345)
import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))
np.set_printoptions(precision=4, suppress=True)
data = pd.Series(np.random.randn(9),
                 index=[['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'd'],
                        [1, 2, 3, 1, 3, 1, 2, 2, 3]])
data

看到的结果是经过美化的带有MultiIndex索引的Series的格式。索引之间 的“间隔”表示“直接使用上面的标签”:

data.index

对于一个层次化索引的对象,可以使用所谓的部分索引,使用它选取数据子集的操作更简单:

print(data['b'])
print("----------------")
print(data['b':'c'])
print("----------------")
print(data.loc[['b', 'd']])
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值