SPP,PPM、ASPP、FPN

本文介绍了深度学习中解决输入尺寸问题的四种技术:SPP允许固定输出尺寸,ASPP利用空洞卷积扩大感受野,PPM在语义分割中融合全局信息,而FPN在目标检测中结合不同层级的特征。这些技术提升了模型对不同尺度输入的处理能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SPP(spatial pyramid pooling)

        在spp出来之前,所有神经网络都是要输入固定尺寸的图片,比如经常遇到的224×224,图片输入网络前都要resize到224×224,导致图片变形,其中的信息也变形了,从而限制了识别精度。而SPP和ASPP就是为了解决这个问题,它可以让网络输入原图而不必resize。空间池化层实际就是一种自适应的层,这样无论你的输入是什么尺寸,输出都是固定的(21xchannel)

SPP的显著特点是:

  1. 不管输入尺寸大小,SPP 可以产生固定尺寸的输出
  2. 使用多个不同大小的pooling窗口
  3. SPP 可以使用同一图像不同尺寸(scale)作为输入, 得到同样长度的池化特征。

        ROI Pooling是针对RoIs的Pooling,其特点是输入特征图尺寸不固定,但是输出特征图尺寸固定。ROI Pooling的思想来自于SPPNet中的Spatial Pyramid Pooling,在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋水 墨色

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值