转圈打印矩阵
给定一个整形矩阵Matrix,请按照顺时针方向转圈的方式,输入(打印)元素值。
例如:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
输出结果为:1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10
要求:额外空间复杂度为O(1)
JAVA代码如下:
package com.bean.algorithmexec;
public class MatrixDemo {
/*
* 给定一个整形矩阵Matrix,请按照顺时针方向转圈的方式,输入(打印)元素值。
* 例如:
* 1 2 3 4
* 5 6 7 8
* 9 10 11 12
* 13 14 15 16
* 输出结果为:1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10
*
* 要求:额外空间复杂度为O(1)
* */
public static void main(String[] args) {
// TODO Auto-generated method stub
//初始化一个 4*4的整形矩阵,从第一行第一列从左向右,第二行,第三行,直到第四行依次赋值 1,2,...16.
int[][] matrixDemo=new int[4][4];
matrixDemo=createMatrix();
printMatrix(matrixDemo);
//转圈打印
spiralOrderPrint(matrixDemo);
}
private static int[][] createMatrix() {
// TODO Auto-generated method stub
int matrix[][]=new int[4][4];
int k=1;
for(int i=0;i<4;i++) {
for(int j=0;j<4;j++) {
matrix[i][j]=k;
k++;
}
}
return matrix;
}
//顺序打印矩阵元素
private static void printMatrix(int[][] matrix) {
for(int i=0;i<4;i++) {
for(int j=0;j<4;j++) {
System.out.print(matrix[i][j]+"\t");
}
System.out.println();
}
}
//转圈打印
private static void spiralOrderPrint(int[][] matrix) {
int tR=0;
int tC=0;
int dR=matrix.length-1;
int dC=matrix[0].length-1;
while(tR<=dR && tC<=dC) {
printEdge(matrix, tR++, tC++, dR--,dC--);
}
}
private static void printEdge(int[][] matrix, int tR, int tC, int dR, int dC) {
// TODO Auto-generated method stub
if(tR==dR) {
//子矩阵只有一行时
for(int i=tC;i<=dC;i++) {
System.out.print(matrix[tR][i]+" ");
}
}else if(tC==dC) {
//子矩阵只有一列时
for(int i=tR;i<=dR;i++){
System.out.print(matrix[i][tC]+" ");
}
}else {
//一般情况
int curC=tC;
int curR=tR;
while(curC!= dC) {
System.out.print(matrix[tR][curC]+" ");
curC++;
}
while(curR!= dR) {
System.out.print(matrix[curR][dC]+" ");
curR++;
}
while(curC!= tC) {
System.out.print(matrix[dR][curC]+" ");
curC--;
}
while(curR!= tR) {
System.out.print(matrix[curR][tC]+" ");
curR--;
}
}
}
}
(完)