MAGNN论文笔记

MAGNN是一种用于异构图的深度学习模型,主要解决在节点内容特征利用、元路径信息丢失和单一元路径依赖的问题。通过Node Content Transformation、Intra-metapath Aggregation和Inter-metapath Aggregation三个组件,MAGNN能更好地捕捉节点间复杂的关系和语义信息,尤其适用于富含节点内容特征的异构图场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 概述

1.1 论文和源代码地址

本文2020年发表在WWW上
论文地址:https://arxiv.org/pdf/2002.01680v1.pdf
源代码地址:

  1. https://github.com/shangzongjiang/MAGNN
  2. https://github.com/cynricfu/MAGNN

1.2 主要思想

以推荐系统为例,要利用多方面的信息对用户进行编码:

  • 用户的特征:性别、年龄、职业等);
  • 用户购买过的物品的特征:大小、颜色、价格、类型等);
  • 用户的近邻信息:
    – 传统方法利用各种距离,如欧式距离来获取用户的邻居;
    – 本文采用了meta路径来获取近邻节点:存在不同的meta路径,作者讨论路径内和路径间的不同融合方法。
    在这里插入图片描述

2 背景知识

Heterogeneous Graph: 由不同类型的结点或者边构成的图。
在这里插入图片描述

Heterogeneous Graph Neural Networks(HGNNs):

  • Ration-based HGNNs: 聚合来自直接相连的邻居结点的信息;如:RGCN, HGT, …
  • Metapath-based HGNNs: 聚合来自元路径邻居结点的信息;如:HAN, GTN, …

Metapath:结点之间的复合关系,是一个由结点或者边构成的有序序列;
在这里插入图片描述
Metapath Instance:实例化;
在这里插入图片描述
为什么使用metapath?
小例子:scholar network with authors, papers, venues and terms;
Author-Paper-Author (APA) and Author-Paper-Venue-Paper-Author(APVPA) 描述作者之间两种不同关系的元路径。APA 元路径关联两位共同作者,而 APVPA 元路径关联两位在同一领域发表论文的作者。因此我们可以将元路径视为两个节点之间的高阶邻近度。由于传统的 GNN 对所有节点一视同仁,因此无法对异构图中复杂的结构和语义信息进行建模。
在这里插入图片描述

3 MAGNN原理

大多数使用元路径异质网络嵌入方法可能存在的三种局限:

  1. 局限1:模型没有利用节点内容特征,因此它很少在具有丰富节点内容特征的异构图上表现良好;如:metapath2vec、ESim、HIN2vec 和 HERec
    在这里插入图片描述
  2. 局限2:模型只考虑两个端节点,丢弃了元路径上的所有中间节点,导致信息丢失;如:HERec 和 HAN
    在这里插入图片描述
  3. 局限3:模型在图嵌入中依赖单一元路径。模型需要手动定义元路径,且会丢失来自其他元路径的信息,从而导致性能欠佳;如:metapath2vec
    在这里插入图片描述

3.1 解决局限1:Node Content Transformation

组件1):Node Content Transformation
原理:将不同类型的节点特征投影到同一个潜在向量空间中。
在这里插入图片描述
举例说明,假设要映射到二维潜在向量空间中:

  • 节点 v v v的特征为3维,则 x v A \mathbf{x}_v^A xvA的向量为 3 × 1 3 \times 1 3×1,则设定为 W A \mathbf{W}_A WA 2 × 3 2 \times 3 2×3 h v ′ \mathbf{h}_v' hv 2 × 1 2 \times 1 2×1
  • 节点 s s s的特征为4维,则 x s A \mathbf{x}_s^A xsA的向量为 4 × 1 4 \times 1 4×1,则设定为 W A \mathbf{W}_A WA 2 × 4 2 \times 4 2×4 h s ′ \mathbf{h}_s' hs 2 × 1 2 \times 1 2×1
  • h v ′ \mathbf{h}_v' hv h s ′ \mathbf{h}_s' hs在同一个二维向量空间中。

3.2 解决局限2:Intra-metapath Aggregation

组件2):Intra-metapath Aggregation;
作用:编码、聚合元路径实例,生成特定元路径的结点表示。
在这里插入图片描述
步骤如下:

  • 对一条路径进行编码:利用设定的metapath,找到目标节点 v v v的所有邻居节点 N v P \mathcal{N}_{v}^P NvP, P ( v , u ) P(v, u) P(v,u)表示连接目标节点 v v v到邻居节点 u ∈ N v P u \in \mathcal{N}_{v}^P uNvP的路径,可以利用加权平均(不考虑路径上节点的先后顺序)、或者LSTM方法(把路径考虑为一个序列)将该条路径上的节点融合后得到 h P ( v , u ) \mathbf{h}_{P(v, u)} hP(v,u):

h P ( v , u ) = f θ ( P ( v , u ) ) = f θ ( h v ′ , h u ′ ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HenrySmale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值