9.1.2 简单介绍两阶段模型R-CNN、SPPNet、Fast R-CNN、Faster R-CNN的发展过程

9.1.2 简单介绍两阶段模型R-CNN、SPPNet、Fast R-CNN、Faster R-CNN的发展过程

前情回顾:9.1.1 简述目标检测领域中的单阶段模型和两阶段模型的性能差异及其原因

在这里插入图片描述

R-CNN(2014年)

R-CNN(Regional CNN)是第一个卷积神经网络用于目标检测的深度学习模型。

它的主要思路是:

  1. 首先使用无监督的选择性搜索(SelectiveSearch,SS)方法将输入图像中具有相似颜色直方图特征的区域进行递归合并,产生约2000个候选区域
  2. 然后从输入图像中截取这些候选区域对应的图像,将其裁剪缩放至合适的尺寸,并相继送入一个CNN 特征提取网络进行高层次的特征提取
  3. 提取出的特征再被送入一个SVM分类器进行物体分类,以及一个线性回归器进行边界框位置和大小的修正
  4. 最后对检测结果进行非极大值抑制(Non-Maximum Suppressin,NMS)操作,得到最终的检测结果。

在这里插入图片描述

SPPNet(2014)

SPPNet中的SPP是指空间金字塔池化(Spatial Pyramid Pooling)。

  • R-CNN问题1:由于R-CNN中的SVM分类器和线性回归器只接受固定长度的特征输入,这就要求之前由CNN提取的特征必须是固定维度的,进一步要求输入的图像也是固定尺寸的,这也是上文提到的R-CNN中要对候选区域图像进行裁剪或缩放至固定尺寸的原因。

​ 然而,这种操作会破坏截取图像的长宽比,并损失一些信息。

  • SPPNet解决1:针对这一缺陷,SPPNet提出了空间金字塔池化层,该层被放置于CNN的末端,它可以接受任意尺寸的特征图作为输入,然后通过3个窗口大小可变但窗口个数固定的池化层,最终输出具有固定尺寸的池化特征。

  • R-CNN问题2:此外,R-CNN还存在另一个问题:它产生的大量候选区域往往是互相有重叠的,这表明特征提取过程存在大量的重复计算,进而导致了R-CNN的速度瓶颈

  • SPPNet解决2:为解决该问题,SPPNet在R-CNN的基础上,只进行一次全图的特征提取,而后每个候选区域对应的特征直接从全图特征中进行截取,然后送入空间金字塔池化层进行尺寸的统一。

    SPPNet的其他流程与R-CNN基本一致。

    在这里插入图片描述

Fast R-CNN(2015)

Fast R-CNN的思想与SPPNet几乎一致,

  • 主要区别在于Fast R-CNN使用感兴趣区域池化(Region-of-Interest Pooling),SPPNet使用空间金字塔池化。

  • 同时,Fast R-CNN在得到了固定长度的特征后,使用全连接网络代替了之前的SVM分类器和线性回归器来进行物体分类和检测框修正,这样可以与前面用于提取特征的CNN构成一个整体,大大增强了检测任务的一体性,提高了计算效率

    在这里插入图片描述

Faster R-CNN(2015)

  • Faster R-CNN在Fast R-CNN的基础上,将其最耗时的**候选区域提取步骤(即选择性搜索)用一个区域候选网络(Region Proposal Network,RPN)**进行了替代,并且这个RPN和用于检测的Fast R-CNN网络共享特征提取部分的权值。

  • 在Faster R-CNN中,一幅输入图像先由RPN提取候选区域,再取出各个候选区域对应的特征图,送入

    Fast R-CNN(独立于RPN的后半部分)进行物体分类和位置回归。

  • FasterR-CNN第一次做到了实时的物体检测,具有里程碑意义。

在这里插入图片描述

注:插图是根据书中的文字自己绘制的,如有错误,还请您悉心指正,谢谢!

如要转载,请注明出处,谢谢!

下集预告:9.1.3简单介绍单阶段模型YOLO、YOLOv2、YOLO9000、YOLOv3的发展过程

参考文献:

《百面深度学习》 诸葛越 江云胜主编

出版社:人民邮电出版社(北京)

ISBN:978-7-115-53097-4

2020年7月第1版(2020年7月北京第二次印刷)

推荐阅读:

//好用小工具↓

分享一个免费的chat工具

分享一个好用的读论文的网站

// 深度学习经典网络↓

LeNet网络(1989年提出,1998年改进)

AlexNet网络(2012年提出)

VGGNet网络(2014年提出)

LeNet、AlexNet、VGGNet总结

GoogLeNet网络(2014年提出)

ResNet网络(2015年提出)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值