双边模糊
双边滤波是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。
双边滤波器之所以能够做到在平滑去噪的同时还能够很好的保存边缘,是由于其滤波器的核由两个函数生成:空间域核和值域核。
空间域核
为模板窗口的其他系数的坐标;为模板窗口的中心坐标点;为高斯函数的标准差。 空间域核由像素位置欧式距离决定的模板权值:
由的计算公式可知,它是计算临近点到中心点临近程度,因此定义域核是用于衡量空间临近的程度。使用该公式生成的滤波器模板和高斯滤波器使用的模板是没有区别的。
值域核
为模板窗口的其他系数的坐标,表示图像在点处的像素值;为模板窗口的中心坐标点,对应的像素值为;为高斯函数的标准差。值域核是由像素值的差值决定的模板权值:
不管是值域核还是空间域核,其大小都在[0,1]之间。
将上述两个模板相乘就得到了双边滤波器的模板权值:
因此,双边滤波器的数据公式可以表示如下:
- 空域权重衡量的是 两点之间的距离,距离越远权重越低;
- 值域权重衡量的是 两点之间的像素值相似程度,越相似权重越大
由上面的公式可以看出来,两坐标点相距越近,就越趋近于1,双边滤波器权值中占主要地位;两坐标点的像素相差越近,就越趋近于1,中占主要地位。
对图像来说,像素变化小的平坦区域,两相邻的像素值变化不大,值域权重趋近于1,空域权重起主要作用,相当于对此区域进行高斯模糊。在边缘区域,像素值变化较大,值域权重趋近于0,导致此处值下降,当前像素受到的影响就变得很小,从而保留了原来的图像信息。
import cv2 as cv
def bi_demo(image): # 双边模糊
dst = cv.bilateralFilter(image, 0, 100, 15)
'''
def bilateralFilter(src: Any, # 原图数据
d: Any, # 表示在过滤过程中每个像素邻域的直径范围。如果这个值是非正数,则函数会从第五个参数sigmaSpace计算该值。
sigmaColor: Any, # 颜色空间过滤器的sigma值,这个参数的值越大,表明该像素邻域内有越宽广的颜色会被混合到一起,产生较大的半相等颜色区域。
sigmaSpace: Any, # 坐标空间中滤波器的sigma值,如果该值较大,则意味着越远的像素将相互影响,从而使更大的区域中足够相似的颜色获取相同的颜色。当d>0时,d指定了邻域大小且与sigmaSpace无关,否则d正比于sigmaSpace
dst: Any = None, # 这里也可以输出图像
borderType: Any = None) # 用于推断图像外部像素的某种边界模式
'''
cv.imshow("bi_demo image", dst)
src = cv.imread("C:/Users/admin/Desktop/5.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
bi_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()
效果
均值漂移
均值漂移算法是一种通用的聚类算法。
它的基本原理是:对于给定的一定数量样本,任选其中一个样本,以该样本为中心点划定一个圆形区域,求取该圆形区域内样本的质心,即密度最大处的点,再以该点为中心继续执行上述迭代过程,直至最终收敛。
Opencv中对应的函数是pyrMeanShiftFiltering。这个函数让图像在色彩层面平滑滤波,它可以中和色彩分布相近的颜色,平滑色彩细节,侵蚀掉面积较小的颜色区域。
'''
def pyrMeanShiftFiltering(src: Any, # 输入图像,8位,三通道的彩色图像,并不要求必须是RGB格式,HSV、YUV等Opencv中的彩色图像格式均可
sp: Any, # 定义的漂移物理空间半径大小
sr: Any, # 定义的漂移色彩空间半径大小
dst: Any = None, # 输出图像,跟输入src有同样的大小和数据格式
maxLevel: Any = None, # 定义金字塔的最大层数
termcrit: Any = None) # 定义的漂移迭代终止条件,可以设置为迭代次数满足终止,迭代目标与中心点偏差满足终止,或者两者的结合
'''
该函数实现效果的流程是这样的:
1. 以输入图像上src上任一点P0为圆心,建立物理空间上半径为sp,色彩空间上半径为sr的球形空间,物理空间上坐标2个—x、y,色彩空间上坐标3个—R、G、B(或HSV),构成一个5维的空间球体。其中物理空间的范围x和y是图像的长和宽,色彩空间的范围R、G、B分别是0~255。
2. 在1中构建的球形空间中,求得所有点相对于中心点的色彩向量之和后,移动迭代空间的中心点到该向量的终点,并再次计算该球形空间中所有点的向量之和,如此迭代,直到在最后一个空间球体中所求得的向量和的终点就是该空间球体的中心点Pn,迭代结束。
3. 更新输出图像dst上对应的初始原点P0的色彩值为本轮迭代的终点Pn的色彩值,如此完成一个点的色彩均值漂移。
4. 对输入图像src上其他点,依次执行步骤1,、2、3,遍历完所有点位后,整个均值偏移色彩滤波完成,这里忽略对金字塔的讨论。
在这个过程中,关键参数是sp和sr的设置,二者设置的值越大,对图像色彩的平滑效果越明显,同时函数耗时也越多。
import cv2 as cv
def shift_demo(image): # 均值漂移
dst = cv.pyrMeanShiftFiltering(image, 10, 50)
cv.imshow("shift_demo image", dst)
src = cv.imread("C:/Users/admin/Desktop/5.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
shift_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()