线性代数之——线性变换及对应矩阵

1. 线性变换的概念

当一个矩阵 A A A 乘以一个向量 v \boldsymbol v v 时,它将 v \boldsymbol v v 变换到另一个向量 A v A\boldsymbol v Av。进来的是 v \boldsymbol v v,出去的是 T ( v ) = A v T( \boldsymbol v) = A\boldsymbol v T(v)=Av。一个变换 T T T 就像一个函数一样,进来一个数字 x x x,得到 f ( x ) f(x) f(x)。但更高的目标是一次考虑所有的 v \boldsymbol v v,我们是将整个空间 V \boldsymbol V V 进行变换当我们用 A A A 乘以每一个向量 v \boldsymbol v v 时。

一个变换 T T T,为空间 V \boldsymbol V V 中的每一个向量 v \boldsymbol v v 分配一个输出 T ( v ) T( \boldsymbol v) T(v)。这个变换是线性的,如果它满足:
( a ) T ( v + w ) = T ( v ) + T ( w ) ( b ) T ( c v ) = c T ( v )   对 任 意   c   成 立 (a) \quad T(\boldsymbol v+\boldsymbol w)=T(\boldsymbol v) + T(\boldsymbol w) \quad (b) \quad T(c\boldsymbol v)=cT(\boldsymbol v) \space 对任意 \space c \space 成立 (a)T(v+w)=T(v)+T(w)(b)T(cv)=cT(v)  c 

我们可以将这两个条件结合成一个,

T ( c v + d w ) = c T ( v ) + d T ( w ) T(c\boldsymbol v+d\boldsymbol w)=cT(\boldsymbol v) + dT(\boldsymbol w) T(cv+dw)=cT(v)+dT(w)

矩阵相乘满足线性变化,因为 A ( c v + d w ) = c A v + d A w A(c\boldsymbol v+d\boldsymbol w)=cA\boldsymbol v + dA\boldsymbol w A(cv+dw)=cAv+dAw 始终成立。

线性变换满足线到线,三角形到三角形,看下图。

在一条线上的三个点经过变换后仍然在一条线上,变换前等距离的点变换后仍然是等距离的点,输入是一个三角形变换后输出还是一个三角形。这种线性可以扩展到三个向量或者 N 个向量的组合

变换有自己的语言,如果没有矩阵的话,我们没办法讨论列空间。但是这些思想可以被保留,比如列空间包含所有的线性组合 A v Av Av,零空间包含所有使得 A v = 0 Av=0 Av=0 的输入。将它们转化为值域(range)和核(kernel):

T T T 的值域 = 所有输出 T ( v ) T(v) T(v) 的集合,对应于列空间。
T T T 的核 = 所有使得 T ( v ) = 0 T(v)=0 T(v)=0 的输入的集合,对应于零空间。

投影任意一个三维向量到 x y xy xy 平面,那么我们有 T ( x , y , z ) = ( x , y , 0 ) T(x, y, z)=(x, y, 0) T(x,y,z)=(x,y,0)。值域就是这个平面,包含了所有的 T ( v ) T(v) T(v);核是 z z z 轴,它们被投影到了零点。这是一个线性的变换。

投影任意一个三维向量到 z = 1 z=1 z=1 平面,那么我们有 T ( x , y , z ) = ( x , y , 1 ) T(x, y, z)=(x, y, 1) T(x,y,z)=(x,y,1)。这不是一个线性的变换,为什么呢?它根本不能将零向量投影到零点,而这是线性变换必须满足的条件。

假设 A A A 是一个可逆的矩阵,那么核是零向量,值域 W W W 和输入空间 V V V 相同。有另一个线性变化是乘以矩阵 A − 1 A^{-1} A1,它将每一个 $T(v) $都带回到 v v v,有,

T − 1 ( T ( v ) ) = v ⟺ A − 1 A v = v T^{-1}(T(v))=v \Longleftrightarrow A^{-1}Av=v T1(T(v))=vA1Av=v

我们遇到了一个不可避免的问题,所有的线性变换都可以由一个矩阵产生吗?答案是肯定的,所有的变换比如旋转、投影……背后都藏着对应的一个矩阵。

最后我们来直观地感受一下线性变换,看一个矩阵是怎么旋转、拉伸或者以其它方式改变输入的房子的。

2. 线性变换的对应矩阵

这部分的核心在于,如果我们知道了基向量 v 1 ⋯ v n \boldsymbol{v_1} \cdots \boldsymbol{v_n} v1vn 的变换 T ( v 1 ) ⋯ T ( v n ) T(\boldsymbol{v_1}) \cdots T(\boldsymbol{v_n}) T(v1)T(vn),那么由于变换是线性的,我们就知道了任意输入向量 v \boldsymbol{v} v 的变换 T ( v ) T(\boldsymbol{v}) T(v)

每个向量 v \boldsymbol{v} v 都可以表示为基向量的唯一线性组合 c 1 v 1 + ⋯ + c n v n c_1\boldsymbol{v_1}+ \cdots +c_n\boldsymbol{v_n} c1v1++cnvn,又由于 T T T 是线性变换,那么必有 T ( v ) = c 1 T ( v 1 ) + ⋯ + c n T ( v n ) T(\boldsymbol{v}) = c_1T(\boldsymbol{v_1})+ \cdots +c_nT(\boldsymbol{v_n}) T(v)=c1T(v1)++cnT(vn)

函数 1 , x , x 2 , x 3 1, x, x^2, x^3 1,x,x2,x3 的导数是 0 , 1 , 2 x , 3 x 2 0, 1, 2x, 3x^2 0,1,2x,3x2。这里, 1 , x , x 2 , x 3 1, x, x^2, x^3 1,x,x2,x3是立方多项式空间的一个基,输入空间 V V V 包含它们的所有组合,四个基的导数可以告诉我们空间 V V V 中的所有导数。

针对求导这个变换 T T T,我们求解 d v / d x = 0 d\boldsymbol v/dx=\boldsymbol0 dv/dx=0 来找到它的核。解是 v = 常 数 \boldsymbol v=常数 v=,因此 T T T 的零空间是一维的,包含所有的常函数。我们查看 T ( v ) = d v / d x T(v) = d\boldsymbol v/dx T(v)=dv/dx 的所有输出来找到它的值域,由于输入是三次多项式,三次多项式的导数是二次多项式,所以如果输出空间 W W W 是二次多项式空间的话, 那么 T T T 的值域是整个 W W W ,维度为 3。核的维度+值域的维度=输入空间的维度。

导数将立方空间 V V V 变换到平方空间 W W W,对应的矩阵是 3 × 4 3×4 3×4 大小的。

为什么 A A A 是正确的矩阵,我们可以看到乘以矩阵 A A A 和变换 T T T 是一致的, v = a + b x + c x 2 + d x 3 \boldsymbol{v}=a+bx+cx^2+dx^3 v=a+bx+cx2+dx3 的导数是 T ( v ) = b + 2 c x + 3 d x 2 T(v)=b+2cx+3dx^2 T(v)=b+2cx+3dx2

然后我们来看积分变换 T − 1 T^{-1} T1,对应的矩阵是 4 × 3 4×3 4×3 大小的, w = B + C x + D x 2 \boldsymbol{w}=B+Cx+Dx^2 w=B+Cx+Dx2 的导数是 T − 1 ( w ) = 0 + B x + 1 2 C x 2 + 1 3 D x 3 T^{-1}(w)=0+Bx+\frac{1}{2}Cx^2+\frac{1}{3}Dx^3 T1(w)=0+Bx+21Cx2+31Dx3

长方形的矩阵 A A A 没有双边逆矩阵,但它有单边逆,积分是导数的单边逆。

如果你对一个函数积分后再求导,那么你又回到了起始函数,所以 A A − 1 = I AA^{-1}=I AA1=I。但是,如果你先求导再积分,常数项就会丢失, T − 1 T ( 1 ) = 0 T^{-1}T(1)=0 T1T(1)=0,这也就是为什么 A − 1 A A^{-1}A A1A 的第一列为 0。

现在我们来构建任意线性变换的矩阵。假设变换 T T T n n n 维空间 V V V 变换到 m m m 维空间 W W W v 1 ⋯ v n \boldsymbol{v_1} \cdots \boldsymbol{v_n} v1vn V V V 的一组基向量, w 1 ⋯ w m \boldsymbol{w_1} \cdots \boldsymbol{w_m} w1wm W W W 的一组基向量。那么矩阵 A A A m × n m×n m×n 大小的,要找到它的第一列,我们应用 T T T 到第一个基向量 v 1 \boldsymbol{v_1} v1 T ( v 1 ) T(\boldsymbol{v_1}) T(v1) 位于 W W W 空间并有,

T ( v 1 ) = a 11 w 1 + ⋯ + a m 1 w m T(\boldsymbol{v_1}) = a_{11}\boldsymbol{w_1}+ \cdots +a_{m1}\boldsymbol{w_m} T(v1)=a11w1++am1wm

这些数字就是 A A A 的第一列元素,同理我们可以得到矩阵的所有元素。

所有的输入向量都可以表示为 V V V 中基向量的线性组合,变换后的输出则是 W W W 中基向量的线性组合。矩阵 A A A 告诉了我们变换 T T T 做了什么,任何从 V V V W W W 的变换都可以转换为一个矩阵,这个矩阵则取决于基向量的选择。

两个变换 S S S T T T 分别用矩阵 B B B A A A 表示。当我们应用 T T T 变换到 S S S 变换的输出,我们得到了变换的组合 T S TS TS;当我们在 B B B 之后应用 A A A,我们得到了矩阵相乘 A B AB AB矩阵相乘给出了变换 T S TS TS 的正确矩阵 A B AB AB

获取更多精彩,请关注「seniusen」!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值