矩阵论笔记(二)——线性变换

分为如下六个部分:

  1. 线性变换及其运算
  2. 线性变换的矩阵表示
  3. 特征值与特征向量
  4. 对角矩阵
  5. 不变子空间
  6. Jordan 标准形

1 线性变换及其运算

线性变换就是对加法和数乘封闭的,线性空间到自身的映射。

  • 定义:

(1)线性变换:变换(V->V 的映射)、象、原象,线性变换(对加法和数乘封闭的变换),旋转、微分、积分都是线性变换;
(2)值域与核:值域 R(T) 、核 N(T) dimR(T)+dimN(T)=n (秩+亏/零度),象子空间、核子空间;
(3)线性变换的运算:单位变换/恒等变换、零变换,相等、加法、负变换、数乘、乘法、逆变换,幂、多项式, T 的多项式乘法可交换。

  • 计算:

(1) T 的秩:确定基 x1,,xn ,计算 T(x1),,T(xn) 的极大无关组;
(2) T 的亏:解方程组 Tx=0 ,得到解空间的基与维度。

2 线性变换的矩阵表示

确定一组基,基的象用基表示,即得线性变换的矩阵表示。

  • 定义:

(1)线性变换的矩阵表示:按列排基象系数、唯一,数乘变换、数量矩阵, dimR(T)=dimR(A) dimN(T)=dimN(A)
(2)线性变换的运算: T1+T2, kT1, T1T2, T11 的矩阵表示分别为 A+B, kA, AB, A1 ,方阵 A 的多项式,向量变换 y=Tx 对应坐标变换 η=Aξ
(3)矩阵相似: T 在不同基下的矩阵相似, B=C1AC ,其中 C 为过渡矩阵,反身性、对称性、传递性、 f(B)=P1f(A)P ,相似类。

  • 计算:

(1)线性变换的矩阵表示:确定一组基,得到基在 T 下的象,象用基表示,系数按列排即得 A

3 特征值与特征向量

特征向量可使线性变换的矩阵表示最为简单,为三角阵、对角阵或者 Jordan 标准形。

  • 定义:

(1)特征值与特征向量: A T 同特征值, A

  • 2
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值