3线性变换及其矩阵

1.定义及例子

1.1定义

V是数域K上的线性空间,任意 x ∈ V , x\in V, xV, T x = y ∈ V , Tx=y\in V, Tx=yV,则称 T T TV的一个变换,若是满足 T ( k x + l y ) = k T x + l T y , T(kx+ly)=kTx+lTy, T(kx+ly)=kTx+lTy,则称为线性变换

1.2例子

1.2.1例一

二维实向量空间 R 2 R^2 R2,将其绕原点旋转 θ \theta θ角的操作就是一个线性变换。
证明:已知,旋转 θ \theta θ对应的操作为 [ y 1 y 2 ] = [ c o s θ s i n θ − s i n θ c o s θ ] [ x 1 x 2 ] \left[\begin{matrix}y_1\\y_2\end{matrix}\right]=\left[\begin{matrix}cos\theta &sin\theta\\-sin\theta &cos\theta\end{matrix}\right]\left[\begin{matrix}x_1\\x_2\end{matrix}\right] [y1y2]=[cosθsinθsinθcosθ][x1x2]显然,对应的操作是一个变换。接下来证明其是一个线性变换。

[ c o s θ s i n θ − s i n θ c o s θ ] [ k x 1 + l y 1 k x 2 + l y 2 ] = [ c o s θ s i n θ − s i n θ c o s θ ] [ k x 1 k x 2 ] + [ c o s θ s i n θ − s i n θ c o s θ ] [ l y 1 l y 2 ] = k T x + l T y \left[\begin{matrix}cos\theta &sin\theta\\-sin\theta &cos\theta\end{matrix}\right]\left[\begin{matrix}kx_1+ly_1\\kx_2+ly_2\end{matrix}\right]=\left[\begin{matrix}cos\theta &sin\theta\\-sin\theta &cos\theta\end{matrix}\right]\left[\begin{matrix}kx_1\\kx_2\end{matrix}\right]+\left[\begin{matrix}cos\theta &sin\theta\\-sin\theta &cos\theta\end{matrix}\right]\left[\begin{matrix}ly_1\\ly_2\end{matrix}\right]=kTx+lTy [cosθsinθsinθcosθ][kx1+ly1kx2+ly2]=[cosθsinθsinθcosθ][kx1kx2]+[cosθsinθsinθcosθ][ly1ly2]=kTx+lTy得证。

1.2.1例二

次数不超过n的全体实多项式 P n P_n Pn构成实数域上的一个 n + 1 n+1 n+1维的线性空间,其基可选为 { 1 , x , x 2 , . . . , x n } \{1,x,x^2,...,x^n\} {1,x,x2,...,xn},证明微分算子 D = d d x D=\frac{d}{dx} D=dxd P n P_n Pn上的一个线性变换。
证明:显然其是一个变换。
根据求导的性质: D ( k p 1 + l p 2 ) = k D p 1 + l p 2 D(kp_1+lp_2)=kDp_1+lp_2 D(kp1+lp2)=kDp1+lp2
得证。

1.3性质

  1. 零元素的线性变换仍是零元素
  2. 负元素的线性变换等于线性变换后求负
  3. 线性相关的线性变换后仍然线性相关
    证明:
    1:
    T ( o ) = T ( 0 x ) = 0 T ( x ) = o T(o)=T(0x)=0T(x)=o T(o)=T(0x)=0T(x)=o
    2:
    T ( − x ) = T ( − 1 × x ) = − T ( x ) T(-x)=T(-1\times x)=-T(x) T(x)=T(1×x)=T(x)
    3:
    线性相关则有存在不全为零的 c i c_i ci ∑ i c i x i = 0 \sum_{i}c_ix_i=0 icixi=0对其进行线性变换可得 T ( ∑ i c i x i ) = ∑ i c i T ( x i ) = 0 T(\sum_{i}c_ix_i)=\sum_{i}c_iT(x_i)=0 T(icixi)=iciT(xi)=0所以仍然线性相关。
    说明:线性无关的元素线性变换后不一定线性无关,若仍然线性无关,那么说明线性变换是满秩的线性变换。

1.4线性变换运算的一些定义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.线性变换的矩阵表示

2.1定义

T T T在基 { 1 , x , x 2 , . . . , x n } \{1,x,x^2,...,x^n\} {1,x,x2,...,xn}下的表示矩阵A称为线性变换的矩阵表示

2.2定理

在这里插入图片描述
推论: x x x在基下的坐标为 [ ξ 1 ξ 2 ⋮ ξ n ] , \left[\begin{matrix}\xi_1\\\xi_2\\ \vdots\\\xi_n\end{matrix}\right], ξ1ξ2ξn,那么 T x Tx Tx的坐标为 A [ ξ 1 ξ 2 ⋮ ξ n ] A\left[\begin{matrix}\xi_1\\\xi_2\\ \vdots\\\xi_n\end{matrix}\right] Aξ1ξ2ξn
证明: x = [ x 1 , x 2 , ⋯   , x n ] [ ξ 1 ξ 2 ⋮ ξ n ] x=\left[\begin{matrix}x_1,x_2,\cdots,x_n\end{matrix}\right]\left[\begin{matrix}\xi_1\\\xi_2\\ \vdots\\\xi_n\end{matrix}\right] x=[x1,x2,,xn]ξ1ξ2ξn T x = T [ x 1 , x 2 , ⋯   , x n ] [ ξ 1 ξ 2 ⋮ ξ n ] = [ x 1 , x 2 , ⋯   , x n ] A [ ξ 1 ξ 2 ⋮ ξ n ] Tx=T\left[\begin{matrix}x_1,x_2,\cdots,x_n\end{matrix}\right]\left[\begin{matrix}\xi_1\\\xi_2\\ \vdots\\\xi_n\end{matrix}\right]=\left[\begin{matrix}x_1,x_2,\cdots,x_n\end{matrix}\right]A\left[\begin{matrix}\xi_1\\\xi_2\\ \vdots\\\xi_n\end{matrix}\right] Tx=T[x1,x2,,xn]ξ1ξ2ξn=[x1,x2,,xn]Aξ1ξ2ξn ∴ 新 坐 标 [ η 1 η 2 ⋮ η n ] = A [ ξ 1 ξ 2 ⋮ ξ n ] \therefore 新坐标\left[\begin{matrix}\eta_1\\\eta_2\\ \vdots\\\eta_n\end{matrix}\right]=A\left[\begin{matrix}\xi_1\\\xi_2\\ \vdots\\\xi_n\end{matrix}\right] η1η2ηn=Aξ1ξ2ξn

2.3相似矩阵

A A A T T T在基 [ x 1 , x 2 , . . . , x n ] [x_1,x_2,...,x_n] [x1,x2,...,xn]下的表示, B B B T T T在基 [ y 1 , y 2 , . . . , y n ] [y_1,y_2,...,y_n] [y1,y2,...,yn]下的表示,则称 A , B A,B A,B为相似矩阵,且 B = C − 1 A C ( C 为 过 渡 矩 阵 ) B=C^{-1}AC(C为过渡矩阵) B=C1AC(C)
在这里插入图片描述
在这里插入图片描述
写是这么写,但是总感觉线性变换的矩阵表示怪怪的

3.矩阵的值域和核

3.1定义

在这里插入图片描述

3.2定理

在这里插入图片描述
第三讲完结撒花!!!!!
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值