方正证券张志明:5 大认知,揭秘数字化运营探索之路

4e5bbc77ecca305355f766c82b1a2303.gif

21825590a4bfbf4e78791776d33903d6.jpeg

本文根据 2023 年金融营销科技价值发现论坛,方正证券数据智能执行总监张志明主题为《用户洞察驱动的数字化运营方法论探索》的演讲整理所得。

三年前加入证券行业时,听到文锋分享“认知是未来的常识”,对我触动很大,当时就在想什么时候才能把某些认知变成常识,今天主要分享自己在探索数字化运营方法论过程中的五个认知。

认知一:没有用户洞察就没有数字化运营

数字化运营的框架很庞大,用户洞察只是其中的一部分。我认为:用户洞察是对业务机会和用户需求的把握。

站在当下这个节点,我可以说标签体系的建设不难。无论是软件底座还是标签类目,都有着相当成熟的选择。真正难的,是如何回答:标签有什么用的问题。比如搭建的标签中有“性别”,而在股票或基金交易中性别标签怎么用?难道股票和基金有性别属性吗?

再举个例子,RFM 模型也是一个非常著名也普遍的模型。R 是最后一次交易的时间、F 是交易的频率,M 则是交易的金额。具体的分析过程中,由于 R 和 F 两者都与访问有关,具有相关性,可以使用牛顿冷却法找到一个合理的阈值。模型的其他部分相对是简单的,根据这个模型,可以抽象出诸如最优、高价值流失、高价值不活跃、低价值活跃、几乎沉默等分层客群。但是这些客群怎么用呢?如果没有合适工具或钩子进行相应的营销动作,也无法进行落地发挥真正作用。因此用户洞察一定要从业务目标出发,业务目标是满足业务需求或是实现客户价值,要基于这些目标设计标签和模型。

再举一个正面的例子,对券商来说,用户开户-激活-入金-交易是很典型的使用场景。针对那些开户但没有完成激活等后续操作的客户,我们有一个假设:这些客户可能是因为担心亏钱不敢交易,且不知道什么时候该买哪只股票。基于这个假设,我们团队针对一批客户开展了调研问卷,问卷的结论也基本验证了我们的假设。

可是对于开户未激活的客户,数据上是很匮乏的,怎么知道谁是担心亏损,谁又是不知道如何选股导致不愿意交易呢?这就反过来了:业务有需要,我们怎么开发出标签来呢?

后来发现这些客户在开户时填写的风险问卷里涉及到炒股年限、风险偏好,可以提炼出投资能力和投资偏好等标签。

认知二:用科学方法论指导数字化运营

我粗略地把科学方法论分成观察、假设、验证三步。而第一步“观察”又分成大数据和小数据两种,通过多种方法和渠道理解人和世界。大数据指的是数据分析、机器学习等。而小数据则指定性访谈、调研问卷,目的是洞察用户动机。通常先通过定性访谈得到某些方向性的意见,再通过发放收集调研问卷得到某些洞察,如果有需要再进一步通过大数据分析进行验证和提升精确度。

c544f41709497789e4a8cd468b351395.png

以 TGI 分析为例,我们摸索出这种方法,帮助业务人员去挑选标签。比如业务人员想促进量化 T0 的售卖和转化,就可以通过 TGI 分析方法筛选,首先选定资产在 X 万以上的用户,目标人群也会有各种各样的标签,比如周转率低于 X 或亏损大于 X,通过公式计算,目标人群和标签人群重叠交叉的部分占标签人群的比重越高越好。通过这种分析方法,业务同事发现相关产品的转化效果都比较好,而这种分析方法也得到了大范围的应用和落地。

而小数据所涉及到的用户访谈,有时通过结构化的用户访谈会获得一些让人吃惊的用户动机。我们认为将大数据和小数据进行结合,会产生更多的价值。

e852afe0735eec811d30c061e3622fb6.png

关于验证我们还有一个实践感受,那就是:北极星指标不是你的关键指标。之所以这样说是因为在实际业务中,光看北极星指标是没用的,很多时候北极星指标不是我们能控制的。想要真正达成业务目标需要找到那些能够真正撬动北极星指标的指标,而数字化经营所做的就是通过洞察找到北极星指标背后的关键指标,这是我们能控制的部分。

认知三:将科学方法论工具化很重要

如果有工具,进行观察-建设-验证的循环过程就会变快且高效。在观察工具上,方正有标签体系、客群分析、问卷平台、BI 工具、行为分析,在验证工具上,我们有内容生产、投放触达、客群圈选、效果跟踪及 A/B 试验。

在搭建标签或客群圈选体系时,通过与神策的合作,我们将行为数据和业务数据进行结合,这样就可以圈选出符合某种资产条件和交易风格,同时又触发了某个动作的用户。

将科学方法论工具化很重要,举例来说,上面提到业务同事对标签 TGI 分析的接受度较高,但如果只是我们帮助业务部门做,推广使用的规模是有限的,因此我们也规划进行工具化,即自动帮助跑出 TGI 高的标签,业务同事通过选择基础人群和目标人群,就可以自动得出相应的人群。相反,如果没有相关工具的话,即便有洞察和假设,实际运转起来也很难落地。

认知四:数据质量非常重要

首先,只有有用的数据才有质量问题,所以有人抱怨质量问题,说明这个企业对数字化是有所追求的。我们的经验是,数据治理要尽早从严。在与神策数据合作落地埋点管理系统时,得益于神策数据详细规范的流程、制度和 SOP 交付,帮助我们建立了高质量和高可用的埋点管理系统。在流程规范上,我们讲求流程清晰、责任明确、规范明晰、违法必究。同时,我们还建立了需求管理、质量监控、知识管理工具,并定期输出报告。埋点体系落地近两年,每天有近 6 亿个数据上报,而且数据质量是可靠可信的。

同理,在搭建 KYC 和标签体系时,我们采取了类似的管理规范和方法,统一规定标签的定义如何收口、出了问题该怎么追责、用哪种工具管理需求和监控质量等,从而保障顺利落地。

认知五:读万卷书不如行百里路

认知具有相对性,某个认知对有些人来说是信仰,对有些人来说只是一个尝试的方向。我个人是把用户洞察和精细化运营当成信仰来做的。

在数字化经营的路上,从刚开始的轰轰烈烈,到走着走着人越来越少,又到陆续有新的盟友加入,我们在中间也有扎扎实实的收获,把事干起来总还是有成果的。只有亲自去实践,而且抱着坚定的信仰去做,才能把认知内化为常识。

✎✎✎

更多内容

双引擎赋能数字化客户经营

《2022 证券行业行为数据根基建设白皮书》

金融机构敏捷营销:架构、技术和实施方法

0783c10e28316f13307013d14bb19d2a.jpeg

▼ 点击“阅读原文”,了解证券行业解决方案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值