NSWOA|多目标鲸鱼优化算法原理与代码实现(Matlab)

文章来源于我的个人公众号:KAU的云实验台,主要更新智能优化算法的原理、应用、改进

​鲸鱼优化算法(Whale Optimization Algorithm,WOA)的位置更新策略主要分为三个阶段,收缩捕猎阶段,螺旋更新阶段,随机搜索阶段,但原WOA算法无法处理多目标优化问题,因此Pradeep Jangir和 Narottam Jangir(两人同团队,也与Mirjalili有合著)引入了多目标优化相关理论,引入非支配等级等对鲸鱼进行排序选择,于2017年以WOA为框架提出了基于非支配排序的多目标鲸鱼优化算法(Non-Dominated Sorting Whale Optimization Algorithm,NSWOA)。

在这里插入图片描述

本文将对NSWOA进行介绍

00 文章目录

1 多目标鲸鱼优化算法原理

2 代码目录

3 算法性能

4 源码获取

01 多目标鲸鱼优化算法原理

1.1 鲸鱼优化算法流程

WOA是NSWOA的理论基础,这里简单回顾一下WOA的流程,对WOA不了解的WOA算法可以看作者的往期文章:

WOA算法的流程如图所示:

在这里插入图片描述

以上是WOA的流程,由于多目标问题的特殊性,因此需要对最佳个体的选择机制进行修改,下面介绍NSWOA的理论内容。

1.2 多目标鲸鱼优化算法

为了将多目标能力添加到WOA算法中,NSWOA主要在WOA的框架上增加了对个体的非支配排序,通过拥挤度计算和精英保留策略(与NSGA-II类似),筛选出优秀非支配个体引导种群,并进行种群的进化。下面介绍这几个概念。

(1)非支配排序

在这里插入图片描述

非支配排序的概念如图,其中黑点代表着一个个体,对于种群,首先选出Pareto解,其支配等级为1;然后将支配等级为1的解筛出,再从剩下的个体中选出Pareto解,其支配等级为2,以此循环,直至整个种群完成分级,则支配等级越低的解将支配支配等级高的解,此即非支配排序。

(2)拥挤度

在这里插入图片描述

拥挤度则可定义为解i与其领域解i-1和i+1所围矩形的长度,拥挤度越大,则该解周围越稀疏,选取该解作为“最优个体”,有利于种群多样性的保持。

引入上述两个机制后,NSWOA算法的流程如下:
在这里插入图片描述

02 代码目录

在这里插入图片描述

源代码为Pradeep Jangir编写,KAU对其进行中文注释,其中部分NSWOA程序如下:

在这里插入图片描述

代码获取方式见文末

03 算法性能

使用经典的多目标测试函数ZDT1~3对NSWOA进行测试:

在这里插入图片描述

04 源码获取

公众号后台回复:NSWOA

作者也将在后面的文章中更新对于NSWOA的改进,欢迎关注~

参考文献

[1]JANGIR P,JANGIR N. Non-dominated sorting whale optimization algorithm (NSWOA): a multi-objective optimization algorithm for solving engineering design problems[J]. Global journals of research in engineering, 2017;17: 15-42.

另:如果有伙伴有待解决的优化问题(各种领域都可),可以发我,我会选择性的更新利用优化算法解决这些问题的文章。

如果这篇文章对你有帮助或启发,可以点击右下角的赞/在看 (ง•̀_•́)ง(不点也行)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值