基于YOLOv7的植物虫害识别&防治系统(源码&教程)

本文介绍了基于YOLOv7的植物虫害识别系统,该系统在速度和精度上超越其他目标检测器。通过深度学习和图像识别技术,解决了传统识别方法的不足,提供数据集、训练教程和源码。YOLOv7在训练过程中对GPU需求较高,但在预测阶段,CPU也能实现良好效果。研究还包括了模型优化、数据预处理和训练过程的详细描述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.研究背景

由于当今全球气候变化异常,农作物病虫害频发,而且农作物病种类多,成因复杂,其预防和识别难度较大,且传统病虫害识别方法大多靠人目视手查,需要一定的专家经验,具有主观性强、识别准确率低等缺点.而信息技术作为解决农作物病虫害智能、快速识别的新技术、新方法,我们计划利用农业信息大数据智能决策分析系统,建立完善一体化的智能农业信息监测系统等.本文便是基于深度学习将计算机视觉、图像识别等技术运用于农作物病虫害检测中,开发智能病虫害检测系统,以提高病虫害检测准确率,减少病虫害对农业生产的危害.

2.图片展示

4.png

5.png

3.视频演示

基于YOLOv7的植物虫害识别&防治系统(源码&教程)_哔哩哔哩_bilibili

4.数据集的采集(数据集文末链接下载)

2.png

3.png

8.png

5.YOLOv7算法简介

YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器

并在 V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。
相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNe

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值