大模型-微调与对齐-指令微调-指令数据构建

一、指令微调简介

1、定义

指令微调又称监督微调、多任务提示训练,即使用自然语言方式对预训练模型进行参数微调

2、过程

(1)收集或构建指令化实例
(2)通过有监督的方式对大模型进行参数微调

3、指令实例组成

(1)任务描述(也称为指令)
(2)任务输入-任务输出
(3)可选的示例

3、指令数据构建方式

(1)基于现有的NLP任务数据集构建
(2)基于日常对话数据构建
(3)基于合成数据构建

二、基于现有的NLP数据集构建指令数据

1、主要工作
  • 增加任务描述,用于指导模型理解任务目标及相关信息
2、效果

经过NLP指令数据微调后,大模型可以学习到指令遵循的能力,进而可以解决没见过的NLP任务

3、提升方式
  • 使用众包平台PromptSource,提升任务描述标注质量
  • 设计特定的任务描述来反转现有实例的输入-输出对,从而进一步丰富训练实例
4、数据集推荐
  • 常见的NLP数据集:FLAN、P3、Super-Natural Instructions
  • 首选:FLAN v2
    • 谷歌研究人员按照一定比例混合了以上三个数据集合和思维链数据

三、基于日常对话数据构建指令数据

1、出现原因

NLP数据集多样性局限,与人类真是需求匹配度低,为此研究人员开始使用日常对话中的实际需求作为任务描述

2、数据构建方式
  • 将用户真实使用大模型过程产生的数据进行整理
  • 一组标注人员制作输入,另一组标注人员制作输出,然后组成输入-输出对,组合成最终的指令数据集

四、基于合成数据构建指令数据

1、简介

为了减轻人工标注与数据收集的负担,提出的一种半自动化数据合成的方法。

2、实现方式

借助已有的高质量指令数据作为上下文学习示例输入打磨新,进而生成大量多样化的任务描述和输入-输出数据

3、代表性指令数据集
  • Self-Instruct:仅需要使用100多个人工撰写的实例作为初始任务池,然后随机选择数据作为示例,就可以通过大模型生成新的指令微调数据
  • Evo1-Instruct:通过基于深度和广度的演化来提高实例的复杂性和多样性,解决Self-Instruct生成实例过于简单、缺乏多样性问题
  • Self-Align:设计了多中基于人类对齐原则的合成数据过滤技术,通过上下文提示让ChatGPT能够筛选出高质量的实例数据来训练新模型,并进一步让新模型产生更多的与人类对齐的指令微调数据
  • 使用指令回译技术的指令集:使用指令回译技术提升输出文本质量,使用现有文本作为输出,然后利用上下文学习逆向合成输入指令。由于输出内容都是人工撰写的,该方法能让大模型学习生成准确且流畅的文本

五、指令数据构建的提升方法

1、方案
  • 指令格式设计
  • 拓展指令数量
  • 指令重写与筛选
2、指令格式设计
  • 方式:
    • 增加适当数量的实例作为上下文示例一起作为模型输入,提升模型实际性能,缓解模型对于指令格式的敏感性
    • 在指令微调数据中引入思维链数据,例如算术推理的过程
  • 注意点:
    • 指令数据不是包含信息越多越好
    • 添加某些看似有用的信息,比如需要避免的事项、原因或建议,可能不会带来正向的效果提升,甚至会带来负面影响
3、拓展指令数量
  • 方法:逐步拓展指令数量,0.18M、 5.55M、 7.2M以及 17.26M,模型性能会随之上升,但是当指令数据达到7.2M之后,模型性能提升非常缓慢。
  • 日常对话能力提升:一定数量的高质量指令就可以激活大模型的对话能力
  • 兼顾NLP任务可对话场景:基于FLAN-T5的大规模指令集进行拓展,让GPT-4和ChatGPT逐步回答每一个问题,得到5M合成实例,可用于加强下游模型的逐步推理能力
4、指令重写与筛选
  • 方法:使用一些重写或者筛选机制,来提高指令数据的质量或者多样性
  • 指令重写示例数据集
    • Evo1-Instruct:使用深度演化和广度演化策略来重写指令,使指令变得更加复杂、困难和多样
    • YuLan-Chat-3:主体多样性增强方法,预先收集大量主题标签,然后随机选择一种并使用ChatGPT对指令进行重写来适配到相应的主题,最后进行质量筛选来获取高质量的多样性指令数据
  • 指令筛选示例数据集
    • Alpa-gasus:使用GPT-4从原始的52k数据中筛选出GPT-4评分较高的9千条,使用这9千条数据进行训练的,能达到与原始52k数据一样的效果
    • YuLan-Chat-3:提出平衡指令难度策略,用大模型的困惑程度来估算指令数据的难度水平,删除过于简单或困难的指令数据,从而缓解大模型训练不稳定或者过拟合的现象
5、总结
  • 指令的质量比数量重要
  • 指令微调时应优先使用人工标注的多样性指令数据

六、指令微调的作用

1、整体任务性能提升
  • 增强或解锁大模型能力,随着指令数据量的增加,能力会更好
  • 经过指令微调的小模型,比没有经过微调的大模型更出色
  • 在不同的模型架构、预训练目标、模型微调方法上都有一定增益,是一种通用的模型能力增强方法
  • 与预训练相比,指令微调成本更低,指令数据量仅为预训练阶段的万分之一甚至更少
2、任务求解能力增强
  • 大模型能获得较好的指令遵循与任务求解能力,无需下游任务的训练样本或示例就可以解决训练中未见过的任务
  • 缓解预训练阶段出现的一些问题,比如生成重复内容或仅仅补全输入而不解决相关任务
  • 使用英文指令微调的大模型,可以将能力泛化到其他语言的相关任务上
3、领域专业化适配

使用特定领域的指令进行微调,提升特定领域模型效果

<think>好的,我现在需要回答用户关于如何对LLaVA模型进行指令微调的问题。用户提到了LLaVA-CoT,并引用了相关的引用资料,我需要结合这些信息来构建回答。 首先,我得确认LLaVA模型的基本结构。根据引用[1],模型最终调用的是LlavaLlamaForCausalLM的forward方法,这说明LLaVA可能基于Llama架构,结合了视觉和语言模块。接下来,用户提供的引用[3]提到LLaVA-CoT使用Llama-3.2-11BVision-Instruct作为基础模型,因此微调可能需要同时处理视觉和文本数据。 接下来,指令微调的关键步骤通常包括数据准备、模型结构调整、训练参数设置等。需要参考引用[3]中的论文和数据地址,了解他们使用的数据集结构,比如是否有多轮对话或特定任务的数据。同时,引用[2]提到传统方法LLMs协同工具的新范式差异,这可能涉及到如何设计指令数据以促进多模态交互。 然后,具体的微调方法可能包括联合训练视觉编码器和语言模型,或者冻结部分模块以减少计算量。需要检查引用中的资料是否有提到这些策略。例如,LLaVA-CoT可能采用特定的指令格式,如将图像转换为标记,并文本指令结合输入模型。 此外,注意事项部分需要涵盖数据质量、评估方法、计算资源等。引用[3]的数据地址可能提供了清洗和增强多模态数据的示例,而论文可能讨论了评估指标,如任务完成率或人类评估。 最后,生成相关问题时要考虑用户可能感兴趣的扩展方向,比如其他模型的对比、计算资源需求、实际应用中的挑战等。需要确保问题覆盖了用户可能深入探讨的各个方面。</think>### LLaVA模型指令微调方法及指南 LLaVA模型的指令微调需要结合视觉-语言对齐任务指令响应能力,以下是关键步骤和要点: 1. **数据准备** - 使用多模态指令数据集(如LLaVA-CoT-100k[^3]),包含图像-文本对和任务指令描述 - 数据格式示例: ```python { "image": "image_path.jpg", "instruction": "描述图中的场景并分析物理现象", "output": "图中显示..." } ``` 2. **模型架构适配** - 冻结视觉编码器(如CLIP-ViT),仅微调语言模型部分[^1] - 通过线性投影层连接图像特征文本嵌入空间 - 修改输入处理模块以支持多模态指令格式 3. **训练参数设置** - 典型超参数配置: ```python { "learning_rate": 2e-5, "batch_size": 32, "max_length": 512, "warmup_ratio": 0.03 } ``` - 采用混合精度训练和梯度裁剪(阈值1.0) 4. **指令格式设计** - 多轮对话模板: ``` <image>USER: {指令}<0x0A>ASSISTANT: ``` - 支持复杂推理任务的COT(Chain-of-Thought)格式[^3] 5. **评估迭代** - 使用视觉问答(VQA)基准测试 - 人工评估指令跟随能力和事实一致性 - 通过A/B测试对比不同指令模板效果 **关键注意事项**: - 图像分辨率需视觉编码器预训练设置保持一致 - 指令多样性应覆盖目标应用场景 - 需平衡视觉理解语言生成损失权重 - 建议采用渐进式解冻策略(先文本后视觉模块)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值