使用DBSCAN找出数据集中的异常值

1. 引言

找出数据中的异常值是数据预处理的必备工作之一,如果数据中存在异常值对于一些数据分析算法具有重大的影响。
本文主要探讨关于寻找异常值(离群值)的注意事项。

2. 离群值

离群值是指跟大部分数据差异很大的样本。比如,在一项统计国民收入的例子中,少数富豪的收入就很像离群值。离群值对于一些数据分析方法会有很大的影响。我们不妨来举个栗子。

在这里插入图片描述
观察上图,为两个线性模型的分析结果,可以发现右侧只是增加一个离群值,我们的分析结果就会差很多。因此,如果没有处理好离群值,对于数据分析的结果可能会产生重大影响。

3.使用直方图确认离群值

既然我们知道数据集中存在离群值会对我们的分析结果产生影响,那么我们如何来确认数据中的离群值呢?
最常见的方法是使用直方图画出数据的分布。如下所示:
在这里插入图片描述
观察上图,我们很容易判断出这个数据集中确实存在离群值。但是,如果我们的数据集包含两个纬度的特征呢?我们来看个例子,如下:

在这里插入图片描述
观察上图,为我们将两个纬度的直方图绘制出来的结果,我们根据上图能否确认离群值呢?

嗯,看起来好像是没有离群值。。。很不幸这次通过看直方图我们的结论是错的。有时候,离群值是需要同时比对数个特征才有办法观察出来。我们不妨换种表示形式,不妨使用散点图(Scatter Plot)来呈现上述数据集,结果如下:

在这里插入图片描述
仔细观察上图右上角有两个样本,跟其他数据样本很不同,所以可以确定是离群值。我们需要同时观察2个特征,才有办法看出离群值。但是,如果数据集中有3个特征呢,难道要画出立体散点图来观察离群值吗?那如果数据集中有4个特征呢?这时候我们连图都画不出来了怎么办?

4.使用DBSACN来寻找离群值

DBSCAN是聚类算法的一种,这个方法是通过比较样本之间的距离,来判定那些样本是同一类。另一种常见的聚类算法是K-means,这是通过比较样本跟聚类中心的距离,来判定那些样本是同一类。由于我们的问题是要找是否有样本跟其他样本很不同,因此DBSCAN比较适合。

在下述代码中,我们使用sklearn中内置的SBSCAN方法来尝试找出上图右上角两个异常的离群值。

colors = ['red','blue']
data = np.array([x, y]).T
model = DBSCAN(eps = 0.5, 
               min_samples = 1, 
               leaf_size = 1).fit(data)
plt.figure()
plt.scatter(x, 
            y, 
            c = model.labels_, 
            cmap = matplotlib.colors.ListedColormap(colors))
plt.xlabel("X")
plt.ylabel("Y")
plt.title("Scatter Plot of Feature X and Y")
plt.show()

上述代码画出来的结果如下所示:
在这里插入图片描述
观察上图,可以看出跟其他样本不同,右上角的两个样本被分在不同的群组里。所以,通过使用DBSCAN算法,我们可以方便的找出具有多维特征的数据集里是否含有离群值。

5. 总结

我们生活的世界里数据每秒钟都在增长,在对数据进行分析之前,发现数据中的异常对于探索性数据分析至关重要。 本文就如何寻找数据集中的离群值的方法进行了简单的介绍,在具有多维特征的数据集中,大家不妨使用DBSCAN来寻找其中是否存在离群值。

您学废了吗?

在这里插入图片描述
关注公众号《AI算法之道》,获取更多AI算法资讯。

参考链接

Matlab是一种广泛用于数值计算和数据分析的软件,其中包含了一些内置函数和工具箱,可以帮助用户检测数据集中是否存在异常值异常值,也称为离群点(outliers),是指那些在数据分布中显著偏离其他观测值的数据点。 在Matlab中,你可以通过以下步骤进行异常值检测: 1. **Z-score方法**:使用`zscore`函数计算每个数据点的标准分数,标准分数越远离0,说明该数据点越有可能是异常值。通常,如果一个值的绝对Z-score超过某个阈值(如3),就认为它是异常的。 ```matlab data = ...; % 你的数据 z_scores = zscore(data); threshold = 3; outliers = abs(z_scores) > threshold; ``` 2. **箱线图(Box Plot)**:利用`boxplot`函数绘制箱线图,直观地找出四分位数范围之外的数据点。 ```matlab boxplot(data) outliers = find(isoutlier(data)); % 使用isoutlier函数识别异常值 ``` 3. **IQR(Interquartile Range)方法**:基于四分位距(Q3 - Q1)判断异常值。超出上界Q3 + 1.5*IQR或下界Q1 - 1.5*IQR的数据被认为是异常。 4. **聚类算法**:可以使用`kmeans`或`DBSCAN`等算法对数据进行聚类分析,然后检查哪些样本属于孤立的小簇,可能是异常值。 在完成上述操作后,可以手动确认或使用统计模型(如LOF、Isolation Forest等)进一步处理异常值。同时,需要注意的是,异常值的定义依赖于具体的业务背景和数据分布,所以选择合适的方法很重要。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵卓不凡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值